Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation-enabled binding of SGO1–PP2A to cohesin protects sororin and centromeric cohesion during mitosis

An Erratum to this article was published on 01 February 2013

This article has been updated

Abstract

Timely dissolution of sister-chromatid cohesion in mitosis ensures accurate chromosome segregation to guard against aneuploidy and tumorigenesis. The complex of shugoshin and protein phosphatase 2A (SGO1–PP2A) protects cohesin at centromeres from premature removal by mitotic kinases and WAPL in prophase. Here we address the regulation and mechanism of human SGO1 in centromeric cohesion protection, and show that cyclin-dependent kinase (CDK)-mediated, mitosis-specific phosphorylation of SGO1 activates its cohesion-protection function and enables its direct binding to cohesin. The phospho-SGO1-bound cohesin complex contains PP2A, PDS5 and hypophosphorylated sororin, but lacks WAPL. Expression of non-phosphorylatable sororin bypasses the requirement for SGO1–PP2A in centromeric cohesion. Thus, mitotic phosphorylation of SGO1 targets SGO1–PP2A to cohesin, promotes dephosphorylation of PDS5-bound sororin and protects centromeric cohesin from WAPL. PP2A-orchestrated, site-selective dephosphorylation of cohesin and its regulators underlies centromeric cohesion protection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human SGO1 undergoes CDK-dependent phosphorylation at Thr 346 during mitosis.
Figure 2: SGO1 T346A localizes to centromeres, but is defective in sister-chromatid cohesion.
Figure 3: SGO1 T346A localizes to centromeres and binds to PP2A.
Figure 4: SGO1 Thr 346 phosphorylation promotes its binding to cohesin.
Figure 5: SGO1–PP2A maintains cohesin-bound sororin in a hypophosphorylated state to counteract WAPL.
Figure 6: Sororin is required for the ectopic arm cohesion induced by SGO1 overexpression.
Figure 7: Expression of non-phosphorylatable sororin bypasses the requirement for SGO1–PP2A in cohesion protection.
Figure 8: Sororin dissociation from mitotic chromosomes requires CDK1.

Similar content being viewed by others

Change history

  • 20 December 2012

    In the version of this Article initially published online and in print, the protein WAPL was mistakenly written as 'WAP1'.

References

  1. Nasmyth, K. Cohesin: a catenase with separate entry and exit gates? Nat. Cell Biol. 13, 1170–1177 (2011).

    Article  CAS  Google Scholar 

  2. Peters, J. M., Tedeschi, A. & Schmitz, J. The cohesin complex and its roles in chromosome biology. Genes Dev. 22, 3089–3114 (2008).

    Article  CAS  Google Scholar 

  3. Onn, I., Heidinger-Pauli, J. M., Guacci, V., Unal, E. & Koshland, D. E. Sister chromatid cohesion: a simple concept with a complex reality. Annu. Rev. Cell Dev. Biol. 24, 105–129 (2008).

    Article  CAS  Google Scholar 

  4. Sherwood, R., Takahashi, T. S. & Jallepalli, P. V. Sister acts: coordinating DNA replication and cohesion establishment. Genes Dev. 24, 2723–2731 (2010).

    Article  CAS  Google Scholar 

  5. Rankin, S., Ayad, N. G. & Kirschner, M. W. Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol. Cell 18, 185–200 (2005).

    Article  CAS  Google Scholar 

  6. Schmitz, J., Watrin, E., Lenart, P., Mechtler, K. & Peters, J. M. Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr. Biol. 17, 630–636 (2007).

    Article  CAS  Google Scholar 

  7. Rolef Ben-Shahar, T. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566 (2008).

    Article  Google Scholar 

  8. Unal, E. et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566–569 (2008).

    Article  Google Scholar 

  9. Rowland, B. D. et al. Building sister chromatid cohesion: SMC3 acetylation counteracts an antiestablishment activity. Mol. Cell 33, 763–774 (2009).

    Article  CAS  Google Scholar 

  10. Zhang, J. et al. Acetylation of SMC3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143–151 (2008).

    Article  CAS  Google Scholar 

  11. Nishiyama, T. et al. Sororin mediates sister chromatid cohesion by antagonizing WAPL. Cell 143, 737–749 (2010).

    Article  CAS  Google Scholar 

  12. Lafont, A. L., Song, J. & Rankin, S. Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion. Proc. Natl Acad. Sci. USA 107, 20364–20369 (2010).

    Article  CAS  Google Scholar 

  13. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).

    Article  CAS  Google Scholar 

  14. Hauf, S. et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 3, e69 (2005).

    Article  Google Scholar 

  15. Kueng, S. et al. WAPL controls the dynamic association of cohesin with chromatin. Cell 127, 955–967 (2006).

    Article  CAS  Google Scholar 

  16. Dreier, M. R., Bekier, M. E. II & Taylor, W. R. Regulation of sororin by CDK1-mediated phosphorylation. J. Cell Sci. 124, 2976–2987 (2011).

    Article  CAS  Google Scholar 

  17. Zhang, N., Panigrahi, A. K., Mao, Q. & Pati, D. Interaction of sororin protein with polo-like kinase 1 mediates resolution of chromosomal arm cohesion. J. Biol. Chem. 286, 41826–41837 (2011).

    Article  CAS  Google Scholar 

  18. Tang, Z. et al. PP2A is required for centromeric localization of SGO1 and proper chromosome segregation. Dev. Cell 10, 575–585 (2006).

    Article  CAS  Google Scholar 

  19. Tang, Z., Sun, Y., Harley, S. E., Zou, H. & Yu, H. Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proc. Natl Acad. Sci. USA 101, 18012–18017 (2004).

    Article  CAS  Google Scholar 

  20. Kitajima, T. S., Hauf, S., Ohsugi, M., Yamamoto, T. & Watanabe, Y. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr. Biol. 15, 353–359 (2005).

    Article  CAS  Google Scholar 

  21. Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46–52 (2006).

    Article  CAS  Google Scholar 

  22. Gandhi, R., Gillespie, P. J. & Hirano, T. Human WAPL is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16, 2406–2417 (2006).

    Article  CAS  Google Scholar 

  23. Karamysheva, Z., Diaz-Martinez, L. A., Crow, S. E., Li, B. & Yu, H. Multiple anaphase-promoting complex/cyclosome degrons mediate the degradation of human SGO1. J. Biol. Chem. 284, 1772–1780 (2009).

    Article  CAS  Google Scholar 

  24. Xu, Z. et al. Structure and function of the PP2A-shugoshin interaction. Mol. Cell 35, 426–441 (2009).

    Article  CAS  Google Scholar 

  25. Tanno, Y. et al. Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres. Genes Dev. 24, 2169–2179 (2010).

    Article  CAS  Google Scholar 

  26. McGuinness, B. E., Hirota, T., Kudo, N. R., Peters, J. M. & Nasmyth, K. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol. 3, e86 (2005).

    Article  Google Scholar 

  27. Riedel, C. G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).

    Article  CAS  Google Scholar 

  28. Domingo-Sananes, M. R., Kapuy, O., Hunt, T. & Novak, B. Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis. Phil. Trans. R. Soc. B 366, 3584–3594 (2011).

    Article  CAS  Google Scholar 

  29. Solomon, D. A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039–1043 (2011).

    Article  CAS  Google Scholar 

  30. Orth, M. et al. Shugoshin is a Mad1/Cdc20-like interactor of Mad2. EMBO J. 30, 2868–2880 (2011).

    Article  CAS  Google Scholar 

  31. Llano, E. et al. Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes Dev. 22, 2400–2413 (2008).

    Article  CAS  Google Scholar 

  32. Kawashima, S. A., Yamagishi, Y., Honda, T., Ishiguro, K. & Watanabe, Y. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327, 172–177 (2010).

    Article  CAS  Google Scholar 

  33. Yamagishi, Y., Honda, T., Tanno, Y. & Watanabe, Y. Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330, 239–243 (2010).

    Article  CAS  Google Scholar 

  34. Wu, F. M., Nguyen, J. V. & Rankin, S. A conserved motif at the C terminus of sororin is required for sister chromatid cohesion. J. Biol. Chem. 286, 3579–3586 (2011).

    Article  CAS  Google Scholar 

  35. Wu, N. et al. SCC1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting WAPL. Genes Dev. 26, 1473–1485 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Li and the Protein Chemistry Core at UT Southwestern Medical Center for mass spectrometry analysis of phospho-SGO1. We also thank J. Chen (Oklahoma Medical Research Foundation, USA) for making the sororin antibody and J-M. Peters (Research Institute of Molecular Pathology, Vienna, Austria) for providing the phospho-S1224-SA2 antibody. S.R. was financially supported by grant RR016478 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and is a Pew Scholar in the Biomedical Sciences. H.Y. is an Investigator with the Howard Hughes Medical Institute and is supported by grants from the Welch Foundation (I-1441) and the Cancer Prevention Research Institute of Texas (RP110465).

Author information

Authors and Affiliations

Authors

Contributions

H.L. designed and performed all experiments and analysed the data. H.Y. supervised the project and analysed the data. S.R. provided key reagents and analysed the data. H.L. and H.Y. wrote the paper.

Corresponding author

Correspondence to Hongtao Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1604 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Rankin, S. & Yu, H. Phosphorylation-enabled binding of SGO1–PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat Cell Biol 15, 40–49 (2013). https://doi.org/10.1038/ncb2637

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2637

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing