Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail

Abstract

Integrin functions are controlled by regulating their affinity for ligand, and by the efficient recycling of intact integrins through endosomes. Here we demonstrate that the Kindlin-binding site in the β1-integrin cytoplasmic domain serves as a molecular switch enabling the sequential binding of two FERM-domain-containing proteins in different cellular compartments. When β1 integrins are at the plasma membrane, Kindlins control ligand-binding affinity. However, when they are internalized, Kindlins dissociate from integrins and sorting nexin 17 (SNX17) is recruited to free β1-integrin tails in early endosomes to prevent β1-integrin degradation, leading to their recycling back to the cell surface. Our results identify SNX17 as a β1-integrin-tail-binding protein that interacts with the free Kindlin-binding site in endosomes to stabilize β1 integrins, resulting in their recycling to the cell surface where they can be reused.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The β1-TT/AA-integrin tail mutation leads to severe defects.
Figure 2: TT788/789 regulate β1 recycling and degradation.
Figure 3: Kindlin-2-dependent regulation of β1-integrin surface levels.
Figure 4: SNX17 requires TT788/789 for β1-integrin-tail binding.
Figure 5: Depletion of SNX17 reduces surface levels of β1 integrins.
Figure 6: SNX17 is required for β1-integrin function.

Similar content being viewed by others

References

  1. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  Google Scholar 

  2. Moser, M., Legate, K. R., Zent, R. & Fässler, R. The tail of integrins, talin, and kindlins. Science 324, 895–899 (2009).

    Article  CAS  Google Scholar 

  3. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288–300 (2010).

    Article  CAS  Google Scholar 

  4. Calderwood, D. A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277, 21749–21758 (2002).

    Article  CAS  Google Scholar 

  5. Calderwood, D. A. et al. The Talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071–28074 (1999).

    Article  CAS  Google Scholar 

  6. Ma, Y. Q., Qin, J., Wu, C. & Plow, E. F. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J. Cell Biol. 181, 439–446 (2008).

    Article  CAS  Google Scholar 

  7. Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330 (2008).

    Article  CAS  Google Scholar 

  8. Moser, M. et al. Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nat. Med. 15, 300–305 (2009).

    Article  CAS  Google Scholar 

  9. Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fässler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330 (2008).

    Article  CAS  Google Scholar 

  10. Caswell, P. T., Vadrevu, S. & Norman, J. C. Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol. 10, 843–853 (2009).

    Article  CAS  Google Scholar 

  11. Sung, B. H., Zhu, X., Kaverina, I. & Weaver, A. M. Cortactin controls cell motility and lamellipodial dynamics by regulating ECM secretion. Curr. Biol. 21, 1460–1469 (2011).

    Article  CAS  Google Scholar 

  12. Roberts, M. S., Woods, A. J., Dale, T. C., Van Der Sluijs, P. & Norman, J. C. Protein kinase B/Akt acts via glycogen synthase kinase 3 to regulate recycling of αv β3 and α5β1 integrins. Mol. Cell. Biol. 24, 1505–1515 (2004).

    Article  CAS  Google Scholar 

  13. Woods, A. J., White, D. P., Caswell, P. T. & Norman, J. C. PKD1/PKCmu promotes αv β3 integrin recycling and delivery to nascent focal adhesions. EMBO J. 23, 2531–2543 (2004).

    Article  CAS  Google Scholar 

  14. Margadant, C., Monsuur, H. N., Norman, J. C. & Sonnenberg, A. Mechanisms of integrin activation and trafficking. Curr. Opin. Cell Biol. 23, 607–614 (2011).

    Article  CAS  Google Scholar 

  15. Lobert, V. H. et al. Ubiquitination of α5β1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev. Cell 19, 148–159 (2010).

    Article  CAS  Google Scholar 

  16. Ussar, S. et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 4, e1000289 (2008).

    Article  Google Scholar 

  17. Harburger, D. S., Bouaouina, M. & Calderwood, D. A. Kindlin-1 and -2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J. Biol. Chem. 284, 11485–11497 (2009).

    Article  CAS  Google Scholar 

  18. Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  19. Mann, M. Functional and quantitative proteomics using SILAC. Nat Rev. Mol. Cell Biol. 7, 952–958 (2006).

    Article  CAS  Google Scholar 

  20. Ghai, R. et al. Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc. Natl Acad. Sci. USA 108, 7763–7768 (2011).

    Article  CAS  Google Scholar 

  21. Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003).

    Article  CAS  Google Scholar 

  22. Burden, J. J., Sun, X. M., Garcia, A. B. & Soutar, A. K. Sorting motifs in the intracellular domain of the low density lipoprotein receptor interact with a novel domain of sorting nexin-17. J. Biol. Chem. 279, 16237–16245 (2004).

    Article  CAS  Google Scholar 

  23. Stockinger, W. et al. The PX-domain protein SNX17 interacts with members of the LDL receptor family and modulates endocytosis of the LDL receptor. EMBO J. 21, 4259–4267 (2002).

    Article  CAS  Google Scholar 

  24. Van Kerkhof, P. et al. Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J. 24, 2851–2861 (2005).

    Article  CAS  Google Scholar 

  25. Knauth, P. et al. Functions of sorting nexin 17 domains and recognition motif for P-selectin trafficking. J. Mol. Biol. 347, 813–825 (2005).

    Article  CAS  Google Scholar 

  26. Lee, J. et al. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J. Biol. Chem. 283, 11501–11508 (2008).

    Article  CAS  Google Scholar 

  27. Van Weert, A. W., Geuze, H. J., Groothuis, B. & Stoorvogel, W. Primaquine interferes with membrane recycling from endosomes to the plasma membrane through a direct interaction with endosomes which does not involve neutralisation of endosomal pH nor osmotic swelling of endosomes. Eur. J. Cell Biol. 79, 394–399 (2000).

    Article  CAS  Google Scholar 

  28. Meves, A., Stremmel, C., Gottschalk, K. & Fassler, R. The Kindlin protein family: new members to the club of focal adhesion proteins. Trends Cell Biol. 19, 504–513 (2009).

    Article  CAS  Google Scholar 

  29. Liu, J. et al. Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin activation. J. Biol. Chem. 286, 43334–43342 (2011).

    Article  CAS  Google Scholar 

  30. Cullen, P. J. Endosomal sorting and signalling: an emerging role for sorting nexins. Nat. Rev. Mol. Cell Biol. 9, 574–582 (2008).

    Article  CAS  Google Scholar 

  31. Donoso, M. et al. Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. Mol. Biol. Cell 20, 481–497 (2009).

    Article  CAS  Google Scholar 

  32. Williams, R. et al. Sorting nexin 17 accelerates internalization yet retards degradation of P-selectin. Mol. Biol. Cell 15, 3095–3105 (2004).

    Article  CAS  Google Scholar 

  33. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    Article  CAS  Google Scholar 

  34. Caswell, P. T. et al. Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell Biol. 183, 143–155 (2008).

    Article  CAS  Google Scholar 

  35. Czuchra, A., Meyer, H., Legate, K. R., Brakebusch, C. & Fässler, R. Genetic analysis of β1 integrin ‘activation motifs’ in mice. J. Cell Biol. 174, 889–899 (2006).

    Article  CAS  Google Scholar 

  36. Ussar, S., Wang, H. V., Linder, S., Fässler, R. & Moser, M. The Kindlins: subcellular localization and expression during murine development. Exp. Cell Res. 312, 3142–3151 (2006).

    Article  CAS  Google Scholar 

  37. Azimifar, S. B. et al. Induction of membrane circular dorsal ruffles requires co-signalling of integrin-ILK-complex and EGF receptor. J. Cell Sci. 125, 435–448 (2012).

    Article  CAS  Google Scholar 

  38. Li, M. Z. & Elledge, S. J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251–256 (2007).

    Article  CAS  Google Scholar 

  39. Mates, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).

    Article  CAS  Google Scholar 

  40. Pfeifer, A., Kessler, T., Silletti, S., Cheresh, D. A. & Verma, I. M. Suppression of angiogenesis by lentiviral delivery of PEX, a noncatalytic fragment of matrix metalloproteinase 2. Proc. Natl Acad. Sci. USA 97, 12227–12232 (2000).

    Article  CAS  Google Scholar 

  41. Montanez, E. et al. Analysis of integrin functions in peri-implantation embryos, hematopoietic system, and skin. Methods Enzymol. 426, 239–289 (2007).

    Article  CAS  Google Scholar 

  42. Roberts, M., Barry, S., Woods, A., van der Sluijs, P & Norman, J. PDGF-regulated rab4-dependent recycling of αv β3 integrin from early endosomes is necessary for cell adhesion and spreading. Current Biol. 11, 1392–1402 (2001).

    Article  CAS  Google Scholar 

  43. Meves, A. et al. β1 integrin cytoplasmic tyrosines promote skin tumorigenesis independent of their phosphorylation. Proc. Natl Acad. Sci. USA 108, 15213–15218 (2011).

    Article  CAS  Google Scholar 

  44. Böttcher, R. T. et al. Profilin 1 is required for abscission during late cytokinesis of chondrocytes. EMBO J. 28, 1157–1169 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Norman and R. Ruppert for help with recycling assays and cell sorting, C. Boulegue for mass spectrometry analysis, M. Iglesias for artwork, C. Franke for His–Kindlin-2 purification and R. Zent, A. Pozzi and D. Teis for discussions and critically reading the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (SFB-914), the Tiroler Zukunftsstiftung and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

R.T.B. and C.S. designed and carried out the experiments; A.M. and R.T.B. carried out the proteomics screen; H.M. generated the knock-in mice; M.W. generated Kindlin-null fibroblasts; H-Y.T. carried out the GST-pulldown experiments and contributed to the immunostainings; R.T.B., C.S. and R.F. wrote the manuscript; R.F. initiated and supervised the studies, and designed the experiments.

Corresponding author

Correspondence to Reinhard Fässler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1695 kb)

Supplementary Table 1

Supplementary Information (XLSX 31 kb)

Supplementary Movie 1

Supplementary Information (MOV 970 kb)

Supplementary Movie 2

Supplementary Information (MOV 1778 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, R., Stremmel, C., Meves, A. et al. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat Cell Biol 14, 584–592 (2012). https://doi.org/10.1038/ncb2501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2501

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing