Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of epithelial polarity by the E3 ubiquitin ligase Neuralized and the Bearded inhibitors in Drosophila

Abstract

Understanding how epithelial polarity is established and regulated during tissue morphogenesis is a major issue. Here, we identify a regulatory mechanism important for mesoderm invagination, germ-band extension and transepithelial migration in the Drosophila melanogaster embryo. This mechanism involves the inhibition of the conserved E3 ubiquitin ligase Neuralized by proteins of the Bearded family. First, Bearded mutant embryos exhibited a loss of epithelial polarity associated with an early loss of the apical domain. Bearded regulated epithelial polarity by antagonizing neuralized. Second, repression of Bearded gene expression by Snail was required for the Snail-dependent disassembly of adherens junctions in the mesoderm. Third, neuralized was strictly required to promote the downregulation of the apical domain in the midgut epithelium and to facilitate the transepithelial migration of primordial germ cells across this epithelium. This function of Neuralized was independent of its known role in Notch signalling. Thus, Neuralized has two distinct functions in epithelial cell polarity and Notch signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brd-mediated restriction of Neur activity.
Figure 2: Inhibition of Neur by Brd is required for epithelial polarity.
Figure 3: Brd genes are required for the stabilization of the apical domain.
Figure 4: Brd genes inhibit the disassembly of SAJs in sna mutant embryos.
Figure 5: Overexpression of Brd genes is sufficient to inhibit apical constriction.
Figure 6: Brd genes are required to delay the apical relocalization of adherens junctions and MyoII in the ectoderm.
Figure 7: Neur is required for the remodelling of the midgut epithelium and the transepithelial migration of primordial germ cells.
Figure 8: A model of spatio-temporal regulation of Neur in the midgut.

Similar content being viewed by others

References

  1. St Johnston, D. & Ahringer, J. Cell polarity in eggs and epithelia: parallels and diversity. Cell 141, 757–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Nance, J. & Zallen, J. A. Elaborating polarity: PAR proteins and the cytoskeleton. Development 138, 799–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harris, T. J. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11, 502–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Laprise, P. & Tepass, U. Novel insights into epithelial polarity proteins in Drosophila. Trends Cell Biol. 21, 401–408 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Mavrakis, M., Rikhy, R. & Lippincott-Schwartz, J. Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev. Cell 16, 93–104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lecuit, T. Junctions and vesicular trafficking during Drosophila cellularization. J. Cell Sci. 117, 3427–3433 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Harris, T. J. & Peifer, M. The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. J. Cell Biol. 170, 813–823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGill, M. A., McKinley, R. F. & Harris, T. J. Independent cadherin-catenin and Bazooka clusters interact to assemble adherens junctions. J. Cell Biol. 185, 787–796 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dawes-Hoang, R. E. et al. Folded gastrulation, cell shape change and the control of myosin localization. Development 132, 4165–4178 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Leptin, M. & Grunewald, B. Cell shape changes during gastrulation in Drosophila. Development 110, 73–84 (1990).

    CAS  PubMed  Google Scholar 

  11. Sweeton, D., Parks, S., Costa, M. & Wieschaus, E. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112, 775–789 (1991).

    CAS  PubMed  Google Scholar 

  12. Brodland, G. W. et al. Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila. Proc. Natl Acad. Sci. USA 107, 22111–22116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007).

    Article  PubMed  Google Scholar 

  14. Nikolaidou, K. K. & Barrett, K. A Rho GTPase signaling pathway is used reiteratively in epithelial folding and potentially selects the outcome of Rho activation. Curr. Biol. 14, 1822–1826 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Martin, A. C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M. & Wieschaus, E. F. Integration of contractile forces during tissue invagination. J. Cell Biol. 188, 735–749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chanet, S., Vodovar, N., Mayau, V. & Schweisguth, F. Genome engineering-based analysis of Bearded family genes reveals both functional redundancy and a nonessential function in lateral inhibition in Drosophila. Genetics 182, 1101–1108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leviten, M. W., Lai, E. C. & Posakony, J. W. The Drosophila gene Bearded encodes a novel small protein and shares 3′ UTR sequence motifs with multiple Enhancer of split complex genes. Development 124, 4039–4051 (1997).

    CAS  PubMed  Google Scholar 

  19. Lai, E. C., Bodner, R. & Posakony, J. W. The enhancer of split complex of Drosophila includes four Notch-regulated members of the bearded gene family. Development 127, 3441–3455 (2000).

    CAS  PubMed  Google Scholar 

  20. Fontana, J. R. & Posakony, J. W. Both inhibition and activation of Notch signaling rely on a conserved Neuralized-binding motif in Bearded proteins and the Notch ligand Delta. Dev. Biol. 333, 373–385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bardin, A. J. & Schweisguth, F. Bearded family members inhibit Neuralized-mediated endocytosis and signaling activity of Delta in Drosophila. Dev. Cell 10, 245–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Le Borgne, R., Bardin, A. & Schweisguth, F. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development 132, 1751–1762 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Weinmaster, G. & Fischer, J. A. Notch ligand ubiquitylation: what is it good for? Dev. Cell 21, 134–144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Renzis, S., Yu, J., Zinzen, R. & Wieschaus, E. Dorsal–ventral pattern of Delta trafficking is established by a Snail-Tom-Neuralized pathway. Dev. Cell 10, 257–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Lai, E. C., Bodner, R., Kavaler, J., Freschi, G. & Posakony, J. W. Antagonism of notch signaling activity by members of a novel protein family encoded by the bearded and enhancer of split gene complexes. Development 127, 291–306 (2000).

    CAS  PubMed  Google Scholar 

  26. Grawe, F., Wodarz, A., Lee, B., Knust, E. & Skaer, H. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 122, 951–959 (1996).

    CAS  PubMed  Google Scholar 

  27. Tepass, U. Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila. Dev. Biol. 177, 217–225 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Ni, J-Q. et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat. Meth. 8, 405–407 (2011).

    Article  CAS  Google Scholar 

  29. Morel, V. & Schweisguth, F. Repression by suppressor of hairless and activation by Notch are required to define a single row of single-minded expressing cells in the Drosophila embryo. Genes Dev. 14, 377–388 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Morel, V., Le Borgne, R. & Schweisguth, F. Snail is required for Delta endocytosis and Notch-dependent activation of single-minded expression. Dev. Genes Evol. 213, 65–72 (2003).

    CAS  PubMed  Google Scholar 

  31. Lopez-Schier, H. & Johnston, D. S. Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Dev. Cell 15, 1393–1405 (2001).

    CAS  Google Scholar 

  32. Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, 1997).

    Book  Google Scholar 

  33. Campbell, K., Whissell, G., Franch-Marro, X., Batlle, E. & Casanova, J. Specific GATA factors act as conserved inducers of an endodermal-EMT. Dev. Cell 21, 1051–1061 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Kunwar, P. S., Siekhaus, D. E. & Lehmann, R. In vivo migration: a germ cell perspective. Annu. Rev. Cell Dev. Biol. 22, 237–265 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Kunwar, P. S. et al. Tre1 GPCR initiates germ cell transepithelial migration by regulating Drosophila melanogaster E-cadherin. J. Cell Biol. 183, 157–168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, J. Y. & Harland, R. M. Endocytosis is required for efficient apical constriction during Xenopus gastrulation. Curr. Biol. 20, 253–258 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harris, K. P. & Tepass, U. Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis. J. Cell Biol. 183, 1129–1143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roeth, J. F., Sawyer, J. K., Wilner, D. A. & Peifer, M. Rab11 helps maintain apical crumbs and adherens junctions in the Drosophila embryonic ectoderm. PLoS ONE 4, e7634 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ishiuchi, T. & Takeichi, M. Willin and Par3 cooperatively regulate epithelial apical constriction through aPKC-mediated ROCK phosphorylation. Nat. Cell Biol. 13, 860–866 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Samarin, S. N., Ivanov, A. I., Flatau, G., Parkos, C. A. & Nusrat, A. Rho/Rho-associated kinase-II signaling mediates disassembly of epithelial apical junctions. Mol. Biol. Cell 18, 3429–3439 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Campbell, K., Knust, E. & Skaer, H. Crumbs stabilises epithelial polarity during tissue remodelling. J. Cell Sci. 122, 2604–2612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morais-De-Sa, E., Mirouse, V. & Johnston, D. S. aPKC phosphorylation of bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 141, 509–523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi, E. Y., Santoso, S. & Chavakis, T. Mechanisms of neutrophil transendothelial migration. Front Biosci. 14, 1596–1605 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  44. Jaglarz, M. K. & Howard, K. R. Primordial germ cell migration in Drosophila melanogaster is controlled by somatic tissue. Development 120, 83–89 (1994).

    CAS  PubMed  Google Scholar 

  45. Jaglarz, M. K. & Howard, K. R. The active migration of Drosophila primordial germ cells. Development 121, 3495–3503 (1995).

    CAS  PubMed  Google Scholar 

  46. Benhra, N., Vignaux, F., Dussert, A., Schweisguth, F. & Le Borgne, R. Neuralized promotes basal to apical transcytosis of delta in epithelial cells. Mol. Biol. Cell 21, 2078–2086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koo, B. K. et al. An obligatory role of mind bomb-1 in notch signaling of Mammalian development. PLoS ONE 2, e1221 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wirtz-Peitz, F., Nishimura, T. & Knoblich, J. A. Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135, 161–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Biggin (Lawrence Berkeley National Laboratory, Berkeley, USA), P. Bryant (University of California Irvine, Irvine, California, USA), K. Choi (Baylor College of Medicine, Houston, Texas, USA), Y-N. Jan (University of California San Francisco, San Francisco, California, USA), D. Kiehart (Duke University, Durham, North Carolina, USA), J. Knoblich (Institute of Molecular Biotechnology, Austria, Vienna), P. Lasko (McGill University, Montreal, Quebec, Canada), M. Leptin (University of Koln, Koln, Germany), A. Martinez-Arias (University of Cambridge, Cambridge, UK), N. Perrimon (Harvard University, Boston, USA), A. Preiss (University of Hohenheim, Hohenheim, Germany), M. Rand, (University of Vermont, Burlington, Vermont, USA), J. Skeath (Washington University, Saint Louis, Missouri, USA), U. Tepass (University of Toronto, Toronto, Canada), E. Wieschaus (Princeton University, Princeton, New Jersey, USA) and A. Wodarz (University of Góttingen, Góttingen, Germany) the Bloomington Drosophila Stock Center, the Developmental Studies Hybridoma Bank and Flybase for flies, antibodies and other resources. We thank S. Guadagnini for the scanning electron microscopy. We are very grateful to L. Couturier for her help in the analysis of midgut polarity. We thank V. Mayau for technical help and A. Bardin, T. Lecuit, M. Leptin and all laboratory members for discussion and critical reading. This work was financially supported by the CNRS, Institut Pasteur, ANR (08-BLAN-0235) and FRM (DEQ20100318284). S.C. received fellowships from the MENRT and the ARC.

Author information

Authors and Affiliations

Authors

Contributions

S.C. performed all of the experiments. F.S. and S.C. analysed the data and wrote the paper.

Corresponding author

Correspondence to François Schweisguth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1239 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanet, S., Schweisguth, F. Regulation of epithelial polarity by the E3 ubiquitin ligase Neuralized and the Bearded inhibitors in Drosophila. Nat Cell Biol 14, 467–476 (2012). https://doi.org/10.1038/ncb2481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2481

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing