Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation

A Corrigendum to this article was published on 02 May 2012

This article has been updated

Abstract

The DNA-damage response (DDR) arrests cell-cycle progression until damage is removed. DNA-damage-induced cellular senescence is associated with persistent DDR. The molecular bases that distinguish transient from persistent DDR are unknown. Here we show that a large fraction of exogenously induced persistent DDR markers is associated with telomeric DNA in cultured cells and mammalian tissues. In yeast, a chromosomal DNA double-strand break next to a telomeric sequence resists repair and impairs DNA ligase 4 recruitment. In mammalian cells, ectopic localization of telomeric factor TRF2 next to a double-strand break induces persistent DNA damage and DDR. Linear, but not circular, telomeric DNA or scrambled DNA induces a prolonged checkpoint in normal cells. In terminally differentiated tissues of old primates, DDR markers accumulate at telomeres that are not critically short. We propose that linear genomes are not uniformly reparable and that telomeric DNA tracts, if damaged, are irreparable and trigger persistent DDR and cellular senescence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ionizing radiation induces persistent DDR activation and cellular senescence.
Figure 2: Persistent DDR is preferentially associated with telomeric DNA.
Figure 3: Persistent DDR is physically associated with telomeric DNA.
Figure 4: Ionizing radiation generates persistent DDR at telomeres in vivo.
Figure 5: TRF2 overexpression does not prevent senescence establishment and heterochromatin disruption does not prevent the persistence of DDR at telomeres.
Figure 6: Lack of repair of a chromosomal DSB adjacent to telomeric DNA repeats and impaired DNA ligase 4 recruitment.
Figure 7: Ectopic TRF2 modulates DNA repair and DDR-focus persistence, and exposed telomeric DNA ends cause a prolonged checkpoint.
Figure 8: Persistent DDR accumulates at telomeres independently of their lengths, also in ageing primates.

Accession codes

Accessions

Sequence Read Archive

Change history

  • 18 April 2012

    In the version of this Article initially published online and in print, a reference was inadvertently omitted.

References

  1. 1

    Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    CAS  Article  Google Scholar 

  8. 8

    d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  Google Scholar 

  9. 9

    Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell 14, 501–513 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    CAS  Article  Google Scholar 

  11. 11

    Evan, G. I. & d’Adda di Fagagna, F. Cellular senescence: hot or what? Curr. Opin. Genet. Dev. 19, 25–31 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Schmitt, C. A. Senescence, apoptosis and therapy-cutting the lifelines of cancer. Nat. Rev. Cancer 3, 286–295 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Nijnik, A. et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447, 686–690 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Jeyapalan, J. C., Ferreira, M., Sedivy, J. M. & Herbig, U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128, 36–44 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Meier, A. et al. Spreading of mammalian DNA-damage response factors studied by ChIP-chip at damaged telomeres. EMBO J. 26, 2707–2718 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Zhou, B. B. & Bartek, J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat. Rev. Cancer 4, 216–225 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Rodier, F. et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J. Cell Sci. 124, 68–81 (2011).

    CAS  Article  Google Scholar 

  22. 22

    O’Sullivan, R. J. & Karlseder, J. Telomeres: protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol. 11, 171–181 (2010).

    Article  Google Scholar 

  23. 23

    Bae, N. S. & Baumann, P. A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol. Cell 26, 323–334 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Bombarde, O. et al. TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends. EMBO J. 29, 1573–1584 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

    Article  Google Scholar 

  26. 26

    Le, O. N. et al. Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell 9, 398–409 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Fujita, K. et al. Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence. Nat. Cell Biol. 12, 1205–1212 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Gonzalo, S. et al. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat. Cell Biol. 7, 420–428 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Marchion, D. C., Bicaku, E., Daud, A. I., Sullivan, D. M. & Munster, P. N. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res. 65, 3815–3822 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31, 167–177 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Diede, S. J. & Gottschling, D. E. Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr. Biol. 11, 1336–1340 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Michelson, R. J., Rosenstein, S. & Weinert, T. A telomeric repeat sequence adjacent to a DNA double-stranded break produces an anticheckpoint. Genes Dev. 19, 2546–2559 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Marcand, S., Pardo, B., Gratias, A., Cahun, S. & Callebaut, I. Multiple pathways inhibit NHEJ at tolemeres. Genes Dev. 22, 1153–1158 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Celli, G. B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7, 712–718 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Ancelin, K. et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol. Cell Biol. 22, 3474–3487 (2002).

    CAS  Article  Google Scholar 

  38. 38

    Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nat. Cell Biol. 9, 675–682 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Huang, L. C., Clarkin, K. C. & Wahl, G. M. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc. Natl Acad. Sci. USA 93, 4827–4832 (1996).

    CAS  Article  Google Scholar 

  40. 40

    Petersen, S., Saretzki, G. & von Zglinicki, T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp. Cell Res. 239, 152–160 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Rochette, P. J. & Brash, D. E. Human telomeres are hypersensitive to UV-induced DNA damage and refractory to repair. PLoS Genet. 6, e1000926 (2010).

    Article  Google Scholar 

  42. 42

    Gomes, N. M. et al. Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 10, 761–768 (2011).

    CAS  Article  Google Scholar 

  43. 43

    Giaimo, S. & d’Adda di Fagagna, F. Is cellular senescence an example of antagonistic pleiotropy? Aging Celldoi: 10.1111/j.1474-9726.2012.00807.x (2012).

  44. 44

    Marusyk, A., Wheeler, L. J., Mathews, C. K. & DeGregori, J. p53 mediates senescence-like arrest induced by chronic replicational stress. Mol. Cell Biol. 27, 5336–5351 (2007).

    CAS  Article  Google Scholar 

  45. 45

    Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    CAS  Article  Google Scholar 

  46. 46

    Ye, J. et al. TRF2 and apollo cooperate with topoisomerase 2α to protect human telomeres from replicative damage. Cell 142, 230–242 (2010).

    CAS  Article  Google Scholar 

  47. 47

    Soutoglou, E. & Misteli, T. Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320, 1507–1510 (2008).

    CAS  Article  Google Scholar 

  48. 48

    Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol. 8, 870–876 (2006).

    CAS  Article  Google Scholar 

  49. 49

    Francia, S., Weiss, R. S. & d’Adda di Fagagna, F. Need telomere maintenance? Call 911 Cell Div. 2, 3 (2007).

    Article  Google Scholar 

  50. 50

    Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317–328 (2010).

    CAS  Article  Google Scholar 

  51. 51

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  Google Scholar 

  52. 52

    Nobuyuki, O. A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man. Cyber. 9, 62–66 (1979).

    Article  Google Scholar 

  53. 53

    Duffy, D. L. Lodplot: plot a genome scan. R package version 1.1. (2007).

  54. 54

    The R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2008.

  55. 55

    Di Micco, R. et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat. Cell Biol. 13, 292–302 (2011).

    CAS  Article  Google Scholar 

  56. 56

    Viscardi, V., Bonetti, D., Cartagena-Lirola, H., Lucchini, G. & Longhese, M. P. MRX-dependent DNA damage response to short telomeres. Mol. Biol. Cell 18, 3047–3058 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank V. Dall’Olio and L. Tizzoni from IFOM RT–PCR Unit, A. Oldani and all the IFOM Imaging Unit, L. Rotta from IFOM Microarray and NGS Unit, IFOM Cell Biology Unit for support; V. Boccardi for discussions; P. Baumann, T. F. Halazonetis, T. Weinert, D. E. Gottschling, E. Soutoglou, E. Gilson, P. Jeggo, A. Musacchio and S. Minucci for sharing reagents; O. Le for mouse brain tissue sectioning and all F.d’A.d.F. laboratory members for discussions. F.d’A.d.F.’s laboratory is supported by FIRC (Fondazione Italiana per la Ricerca sul Cancro), AIRC (Associazione Italiana per la Ricerca sul Cancro; grant number 8866), European Union (GENINCA, contract number 202230), HFSP (Human Frontier Science Program), AICR (Association for International Cancer Research), EMBO Young Investigator Program and Telethon. M.P.L.’s laboratory is supported by AIRC (grant number 11407), Cofinanziamento 2008 MIUR/Università di Milano-Bicocca and the European Union. C.M.B. is supported by a grant from the Canadian Institute of Health Research (number IAO-79317). U.H. is supported by a New Scholar Award from the Ellison Medical Foundation (AG-NS-0387-07) and by a grant (R01CA136533) from the National Cancer Institute.

Author information

Affiliations

Authors

Contributions

F.R. generated and assembled data in Figs 5a–c,e–f,h–i, 7a–c, 8d and Supplementary Figs S1b–c, S3b, S4c, S5, S6, S7b–c, S8a; M.C. and M.P.L. generated data in Fig. 6; S.B. carried out the microinjection experiments; D.C. carried out the analysis of sequencing data and generated data in Fig. 3a,b; J.M.K. generated data in Fig. 8e and Supplementary Fig. S8b; G.B. contributed to the pre-processing and analysis of sequencing data in Fig. 3a,b; M.D. provided technical assistance; V.M. generated data in Fig. 5d,g and provided technical assistance; C.M.B. provided irradiated mouse brain sections; U.H. provided baboon sections and edited the manuscript; M.F. generated and assembled data of all remaining figures, carried out ChIP assays in mammalian cells and contributed to experimental design and manuscript writing; F.d’A.d.F. planned and supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Fabrizio d’Adda di Fagagna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3555 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fumagalli, M., Rossiello, F., Clerici, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14, 355–365 (2012). https://doi.org/10.1038/ncb2466

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing