Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in Drosophila

Abstract

Although many organ functions rely on epithelial tubes with correct dimensions, mechanisms underlying tube size control are poorly understood. We analyse the cellular mechanism of tracheal tube elongation in Drosophila, and describe an essential role of the conserved tyrosine kinase Src42A in this process. We show that Src42A is required for polarized cell shape changes and cell rearrangements that mediate tube elongation. In contrast, diametric expansion is controlled by apical secretion independently of Src42A. Constitutive activation of Src42A induces axial cell stretching and tracheal overelongation, indicating that Src42A acts instructively in this process. We propose that Src42A-dependent recycling of E-Cadherin at adherens junctions is limiting for cell shape changes and rearrangements in the axial dimension of the tube. Thus, we define distinct cellular processes that independently control axial and diametric expansion of a cylindrical epithelium in a developing organ. Whereas exocytosis-dependent membrane growth drives circumferential tube expansion, Src42A is required to orient membrane growth in the axial dimension of the tube.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Src42A is required for tracheal tube elongation.
Figure 2: Src42A-dependent cell shape changes and cell rearrangements mediate dorsal-trunk elongation.
Figure 3: Single-cell analysis reveals altered tracheal cell shapes and epithelial organization in Src42A mutants.
Figure 4: Constitutive activation of Src42A causes excessive tube elongation and abnormal epithelial organization.
Figure 5: Src42A functions downstream of the luminal matrix and independently of exocytosis.

Similar content being viewed by others

References

  1. Datta, A., Bryant, D. M. & Mostov, K. E. Molecular regulation of lumen morphogenesis. Curr. Biol. 21, R126–R136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lubarsky, B. & Krasnow, M. A. Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Ghabrial, A., Luschnig, S., Metzstein, M. M. & Krasnow, M. A. Branching morphogenesis of the Drosophila tracheal system. Annu. Rev. Cell Dev. Biol. 19, 623–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Beitel, G. & Krasnow, M. Genetic control of epithelial tube size in the Drosophila tracheal system. Development 127, 3271–3282 (2000).

    CAS  PubMed  Google Scholar 

  5. Förster, D., Armbruster, K. & Luschnig, S. Sec24-dependent secretion drives cell-autonomous expansion of tracheal tubes in Drosophila. Curr. Biol. 20, 62–68 (2010).

    Article  PubMed  Google Scholar 

  6. Tsarouhas, V. et al. Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev. Cell 13, 214–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Devine, W. P. et al. Requirement for chitin biosynthesis in epithelial tube morphogenesis. Proc. Natl Acad. Sci. USA 102, 17014–17019 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luschnig, S., Bätz, T., Armbruster, K. & Krasnow, M. serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr. Biol. 16, 186–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Tonning, A. et al. A transient luminal chitinous matrix is required to model epithelial tube diameter in the Drosophila trachea. Dev. Cell 9, 423–430 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, S. et al. Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea. Curr. Biol. 16, 180–185 (2006).

    Article  PubMed  Google Scholar 

  11. Shindo, M. et al. Dual function of Src in the maintenance of adherens junctions during tracheal epithelial morphogenesis. Development 135, 1355–1364 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi, F., Endo, S., Kojima, T. & Saigo, K. Regulation of cell–cell contacts in developing Drosophila eyes by Dsrc41, a new, close relative of vertebrate c-src. Genes Dev. 10, 1645–1656 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi, M., Takahashi, F., Ui-Tei, K., Kojima, T. & Saigo, K. Requirements of genetic interactions between Src42A, armadillo and shotgun, a gene encoding E-cadherin, for normal development in Drosophila. Development 132, 2547–2559 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Tateno, M., Nishida, Y. & Adachi-Yamada, T. Regulation of JNK by Src during Drosophila development. Science 287, 324–327 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Matusek, T. et al. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development 133, 957–966 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Chung, S. et al. Serrano (sano) functions with the planar cell polarity genes to control tracheal tube length. PLoS Genet. 5, e1000746 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585–595 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Strutt, D., Johnson, R., Cooper, K. & Bray, S. Asymmetric localization of frizzled and the determination of notch-dependent cell fate in the Drosophila eye. Curr. Biol. 12, 813–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Strutt, D. I. Asymmetric localization of frizzled and the establishment of cell polarity in the Drosophila wing. Mol. Cell 7, 367–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Martin-Blanco, E. et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 12, 557–570 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rauzi, M., Lenne, P. F. & Lecuit, T. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468, 1110–1114 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Choi, W. et al. The single Drosophila ZO-1 protein Polychaetoid regulates embryonic morphogenesis in coordination with Canoe/Afadin and Enabled. Mol. Biol. Cell 22, 2010–2030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat. Cell Biol. 4, 222–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, J., Zhou, W., Dong, W., Watson, A. M. & Hong, Y. Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc. Natl Acad. Sci. USA 106, 8284–8289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grieder, N. C. et al. γCOP is required for apical protein secretion and epithelial morphogenesis in Drosophila melanogaster. PLoS One 3, e3241 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6, 622–634 (2005).

    CAS  PubMed  Google Scholar 

  28. Levina, E. M., Domnina, L. V., Rovensky, Y. A. & Vasiliev, J. M. Cylindrical substratum induces different patterns of actin microfilament bundles in nontransformed and in ras-transformed epitheliocytes. Exp. Cell Res. 229, 159–165 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Han, B. et al. Conversion of mechanical force into biochemical signaling. J. Biol. Chem 279, 54793–54801 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. et al. Visualizing the mechanical activation of Src. Nature 434, 1040–1045 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Ribeiro, C., Neumann, M. & Affolter, M. Genetic control of cell intercalation during tracheal morphogenesis in Drosophila. Curr. Biol. 14, 2197–2207 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Shaye, D. D., Casanova, J. & Llimargas, M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat. Cell Biol. 10, 964–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Caussinus, E., Colombelli, J. & Affolter, M. Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr. Biol. 18, 1727–1734 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Sweeney, W. E., von Vigier, R. O., Frost, P. & Avner, E. D. Src inhibition ameliorates polycystic kidney disease. J. Am. Soc. Nephrol. 19, 1331–1341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oda, H. & Tsukita, S. Dynamic features of adherens junctions during Drosophila embryonic epithelial morphogenesis revealed by a Dα-catenin–GFP fusion protein. Dev. Genes Evol. 209, 218–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Pedraza, L. G., Stewart, R. A., Li, D-M. & Xu, T. Drosophila Src-family kinases function with Csk to regulate cell proliferation and apoptosis. Oncogene 23, 4754–4762 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Buszczak, M. et al. The Carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shiga, Y., Tanaka-Matakatsu, M. & Hayashi, S. A nuclear GFP/β-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev. Growth Diffn. 38, 99–106 (1996).

    Article  CAS  Google Scholar 

  39. Zhang, L. & Ward, R. E. t. Uninflatable encodes a novel ectodermal apical surface protein required for tracheal inflation in Drosophila. Dev. Biol. 336, 201–212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aubouy, M., Jiang, Y., Glazier, J. A. & Graner, F. A texture tensor to quantify deformations. Granular Matter 5, 67–70 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to K. Armbruster and S. Limmer, who isolated the Src42A mutants, and to T. Aegerter-Wilmsen for help with MATLAB analyses. We thank R. Güttinger for help with cell tracking, T. Aegerter-Wilmsen, C. Aegerter, M. Gonzalez-Gaitan, J. Grosshans, R. Metzger and D. Strutt for advice and comments on the manuscript and C. Lehner for support and discussions. We thank M. Affolter, K. Basler, E. Caussinus, J. Grosshans, S. Hayashi, Y. Hong, T. Kojima, T. Lecuit, A. Müller, D. Strutt, R. Ward and T. Xu for providing antibodies and fly stocks and J. Livet for providing Brainbow plasmids. We apologize to colleagues whose work could not be cited owing to space limitations. This work was supported by the German Research Foundation (DFG LU-1398/1-1), the Swiss National Science Foundation (SNF 3100A0_120713), the RPH-Promotor Stiftung, the Julius Klaus-Stiftung Zürich, the University of Zürich and the Kanton Zürich. D.F. was supported by a Müller fellowship of the Zürich Ph.D. programme in Molecular Life Sciences and by the Forschungskredit of the University of Zürich.

Author information

Authors and Affiliations

Authors

Contributions

D.F. and S.L. designed the experiments, D.F. carried out the experiments, D.F. and S.L. analysed the data. D.F. and S.L. wrote the paper.

Corresponding author

Correspondence to Stefan Luschnig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1418 kb)

Supplementary Movie 1

Supplementary Information (MOV 9799 kb)

Supplementary Movie 2

Supplementary Information (MOV 7583 kb)

Supplementary Movie 3

Supplementary Information (MOV 10728 kb)

Supplementary Movie 4

Supplementary Information (MOV 11331 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förster, D., Luschnig, S. Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in Drosophila. Nat Cell Biol 14, 526–534 (2012). https://doi.org/10.1038/ncb2456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2456

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing