Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation

Abstract

Wallerian degeneration is observed in many neurological disorders, and it is therefore important to elucidate the axonal degeneration mechanism to prevent, and further develop treatment for, such diseases. The ubiquitin–proteasome system (UPS) has been implicated in Wallerian degeneration, but the underlying molecular mechanism remains unclear. Here we show that ZNRF1, an E3 ligase, promotes Wallerian degeneration by targeting AKT to degrade through the UPS. AKT phosphorylates glycogen synthase kinase-3β (GSK3B), and thereby inactivates it in axons. AKT overexpression significantly delays axonal degeneration. Overexpression of the active (non-phosphorylated) form of GSK3B induces CRMP2 phosphorylation, which is required for the microtubule reorganization observed in the degenerating axon. The inhibition of GSK3B and the overexpression of non-phosphorylated CRMP2 both protected axons from Wallerian degeneration. These findings indicate that the ZNRF1–AKT–GSK3B–CRMP2 pathway plays an important role in controlling Wallerian degeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of AKT and GSK3B during Wallerian degeneration.
Figure 2: ZNRF1 targets AKT for proteasomal degradation.
Figure 3: Inhibition of the ZNRF1–AKT–GSK3B pathway delays Wallerian degeneration.
Figure 4: CRMP2 phosphorylation is a critical event downstream of GSK3B activation during Wallerian degeneration.
Figure 5: Inhibition of the ZNRF1–AKT–GSK3B–CRMP2 pathway delays axonal degeneration of optic nerves in vivo.
Figure 6: ZNRF1–AKT–GSK3B–CRMP2 maintains axonal integrity downstream of the mechanism for WLDS-protein-dependent axonal protection.

Similar content being viewed by others

References

  1. Waller, A. Experiments on the section of the glosso-pharnyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structures of their primitive fibres. Edinb. Med. Surg. J. 76, 369–376 (1851).

    PubMed  PubMed Central  Google Scholar 

  2. Raff, M. C., Whitmore, A. V. & Finn, J. T. Axonal self-destruction and neurodegeneration. Science 296, 868–871 (2002).

    Article  CAS  Google Scholar 

  3. Saxena, S. & Caroni, P. Mechanisms of axon degeneration: from development to disease. Prog. Neurobiol. 83, 174–191 (2007).

    Article  CAS  Google Scholar 

  4. Coleman, M. P. & Freeman, M. R. Wallerian degeneration, Wld(S), and Nmnat. Annu. Rev. Neurosci. 33, 245–267 (2010).

    Article  CAS  Google Scholar 

  5. Coleman, M. Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 6, 889–898 (2005).

    Article  CAS  Google Scholar 

  6. Luo, L. & O’Leary, D. D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).

    Article  CAS  Google Scholar 

  7. Lewcock, J. W., Genoud, N., Lettieri, K. & Pfaff, S. L. The ubiquitin ligase Phr1 regulates axon outgrowth through modulation of microtubule dynamics. Neuron 56, 604–620 (2007).

    Article  CAS  Google Scholar 

  8. Miller, B. R. et al. A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat. Neurosci. 12, 387–389 (2009).

    Article  CAS  Google Scholar 

  9. Yoshimura, T., Arimura, N. & Kaibuchi, K. Signaling networks in neuronal polarization. J. Neurosci. 26, 10626–10630 (2006).

    Article  CAS  Google Scholar 

  10. Wildonger, J., Jan, L. Y. & Jan, Y. N. The Tsc1-Tsc2 complex influences neuronal polarity by modulating TORC1 activity and SAD levels. Genes Dev. 22, 2447–2453 (2008).

    Article  CAS  Google Scholar 

  11. Zhou, F. Q. & Snider, W. D. GSK-3β and microtubule assembly in axons. Science 308, 211–214 (2005).

    Article  CAS  Google Scholar 

  12. Araki, T., Sasaki, Y. & Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305, 1010–1013 (2004).

    Article  CAS  Google Scholar 

  13. Zhai, Q. et al. Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron 39, 217–225 (2003).

    Article  CAS  Google Scholar 

  14. Yang, W. L. et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325, 1134–1138 (2009).

    Article  CAS  Google Scholar 

  15. Dickey, C. A. et al. Akt and CHIP coregulate tau degradation through coordinated interactions. Proc. Natl Acad. Sci. USA 105, 3622–3627 (2008).

    Article  CAS  Google Scholar 

  16. Yan, D., Guo, L. & Wang, Y. Requirement of dendritic Akt degradation by the ubiquitin-proteasome system for neuronal polarity. J. Cell Biol. 174, 415–424 (2006).

    Article  CAS  Google Scholar 

  17. Araki, T. & Milbrandt, J. ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases. J. Neurosci. 23, 9385–9394 (2003).

    Article  CAS  Google Scholar 

  18. Alessi, D. R. & Cohen, P. Mechanism of activation and function of protein kinase B. Curr. Opin. Genet. Dev. 8, 55–62 (1998).

    Article  CAS  Google Scholar 

  19. Andjelkovic, M. et al. Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272, 31515–31524 (1997).

    Article  CAS  Google Scholar 

  20. Yoshimura, T. et al. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120, 137–149 (2005).

    Article  CAS  Google Scholar 

  21. King, C. E. et al. Erythropoietin is both neuroprotective and neuroregenerative following optic nerve transection. Exp. Neurol. 205, 48–55 (2007).

    Article  CAS  Google Scholar 

  22. Park, K. K. et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963–966 (2008).

    Article  CAS  Google Scholar 

  23. Conforti, L. et al. A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proc. Natl Acad. Sci. USA 97, 11377–11382 (2000).

    Article  CAS  Google Scholar 

  24. Ding, M. & Shen, K. The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases. Bioessays 30, 1075–1083 (2008).

    Article  CAS  Google Scholar 

  25. Fulga, T. A. & Van Vactor, D. Synapses and growth cones on two sides of a highwire. Neuron 57, 339–344 (2008).

    Article  CAS  Google Scholar 

  26. Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E. M. & Bastiani, M. Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802–806 (2009).

    Article  CAS  Google Scholar 

  27. Saitoh, F. & Araki, T. Proteasomal degradation of glutamine synthetase regulates Schwann cell differentiation. J. Neurosci. 30, 1204–1212 (2010).

    Article  CAS  Google Scholar 

  28. Masuyama, N. et al. Akt inhibits the orphan nuclear receptor Nur77 and T-cell apoptosis. J. Biol. Chem. 276, 32799–32805 (2001).

    Article  CAS  Google Scholar 

  29. Cormack, B. Directed mutagenesis using the polymerase chain reaction. Curr. Protoc. Mol. Biol. 8.5.1–8.5.10 (2001).

  30. Woelk, T. et al. Molecular mechanisms of coupled monoubiquitination. Nat. Cell Biol. 8, 1246–1254 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank N. Matsuda and H. Yashiroda for technical advice and all members of our laboratory for many helpful discussions. This study is supported by grants from the Ministry of Health, Labour, and Welfare (T.A.), NIBIO (Program for Promotion of Fundamental Studies in Health Sciences; T.A.), Japan Foundation for Neuroscience and Mental Health (T.A. and S.W.) and Japan Health Sciences Foundation (T.A. and S.W.). The E7, 2H3 and 9E10 antibody clones developed by M. Klymkowsky, T. Jessel and J. Dodd, and J. Bishop, respectively, were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the Department of Biology, The University of Iowa, USA.

Author information

Authors and Affiliations

Authors

Contributions

S.W. and T.A. designed the experiments, analysed the data and wrote the manuscript. S.W. carried out the experiments, collected the data and prepared the figures. F.S. provided the reagents and technical support. T.A. directed and planned the project.

Corresponding author

Correspondence to Toshiyuki Araki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1647 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakatsuki, S., Saitoh, F. & Araki, T. ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat Cell Biol 13, 1415–1423 (2011). https://doi.org/10.1038/ncb2373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing