Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing

Abstract

Cell elongation and polarization are basic morphogenetic responses to extracellular matrix adhesion. We demonstrate here that human cultured fibroblasts readily polarize when plated on rigid, but not on compliant, substrates. On rigid surfaces, large and uniformly oriented focal adhesions are formed, whereas cells plated on compliant substrates form numerous small and radially oriented adhesions. Live-cell monitoring showed that focal adhesion alignment precedes the overall elongation of the cell, indicating that focal adhesion orientation may direct cell polarization. siRNA-mediated knockdown of 85 human protein tyrosine kinases (PTKs) induced distinct alterations in the cell polarization response, as well as diverse changes in cell traction force generation and focal adhesion formation. Remarkably, changes in rigidity-dependent traction force development, or focal adhesion mechanosensing, were consistently accompanied by abnormalities in the cell polarization response. We propose that the different stages of cell polarization are regulated by multiple, PTK-dependent molecular checkpoints that jointly control cell contractility and focal-adhesion-mediated mechanosensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibroblasts polarize on rigid, but not on compliant, substrates.
Figure 2: Characterization of focal adhesions in cells on stiff and compliant substrates.
Figure 3: Examples of candidate knockdowns obtained from the siRNA screen.
Figure 4: Morphological focal adhesion characteristics and net contractile moments in PTK-knockdown cells with altered rigidity-dependent polarization.
Figure 5: Focal-adhesion-guided cell polarization, and its regulation by PTKs.

Similar content being viewed by others

References

  1. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  2. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  3. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  4. Guilak, F. et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009).

    Article  CAS  Google Scholar 

  5. Janmey, P. A. & Miller, R. T. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124, 9–18 (2011).

    Article  CAS  Google Scholar 

  6. Orr, A. W., Helmke, B. P., Blackman, B. R. & Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 10, 11–20 (2006).

    Article  CAS  Google Scholar 

  7. Vasiliev, J. M. Spreading of non-transformed and transformed cells. Biochim. Biophys. Acta 780, 21–65 (1985).

    CAS  Google Scholar 

  8. Petrie, R. J., Doyle, A. D. & Yamada, K. M. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 10, 538–549 (2009).

    Article  CAS  Google Scholar 

  9. Robinson, D. R., Wu, Y. M. & Lin, S. F. The protein tyrosine kinase family of the human genome. Oncogene 19, 5548–5557 (2000).

    Article  CAS  Google Scholar 

  10. Cramer, L. P. Forming the cell rear first: breaking cell symmetry to trigger directed cell migration. Nat. Cell Biol. 12, 628–632 (2010).

    Article  CAS  Google Scholar 

  11. Brunton, V. G., MacPherson, I. R. & Frame, M. C. Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim. Biophys. Acta 1692, 121–144 (2004).

    Article  CAS  Google Scholar 

  12. Giannone, G. & Sheetz, M. P. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol. 16, 213–223 (2006).

    Article  CAS  Google Scholar 

  13. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    Article  CAS  Google Scholar 

  14. Butler, J. P., Tolic-Norrelykke, I. M., Fabry, B. & Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Phys. Cell Phys. 282, C595–C605 (2002).

    Article  CAS  Google Scholar 

  15. Mitrossilis, D. et al. Single-cell response to stiffness exhibits muscle-like behavior. Proc. Natl Acad. Sci. USA 106, 18243–18248 (2009).

    Article  CAS  Google Scholar 

  16. Saez, A. et al. Traction forces exerted by epithelial cell sheets. J. Phys. Condens. Matter 22, 194119 (2010).

    Article  CAS  Google Scholar 

  17. Saez, A., Buguin, A., Silberzan, P. & Ladoux, B. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys. J. 89, L52–L54 (2005).

    Article  CAS  Google Scholar 

  18. Bershadsky, A. D., Balaban, N. Q. & Geiger, B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003).

    Article  CAS  Google Scholar 

  19. Puklin-Faucher, E. & Sheetz, M. P. The mechanical integrin cycle. J. Cell Sci. 122, 179–186 (2009).

    Article  CAS  Google Scholar 

  20. Schwartz, M. A. & DeSimone, D. W. Cell adhesion receptors in mechanotransduction. Curr. Opin. Cell Biol. 20, 551–556 (2008).

    Article  CAS  Google Scholar 

  21. Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    Article  CAS  Google Scholar 

  22. Goffin, J. M. et al. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006).

    Article  CAS  Google Scholar 

  23. Stricker, J., Aratyn-Schaus, Y., Oakes, P. W. & Gardel, M. L. Spatiotemporal constraints on the force-dependent growth of focal adhesions. Biophys. J. 100, 2883–2893 (2011).

    Article  CAS  Google Scholar 

  24. Fouchard, J., Mitrossilis, D. & Asnacios, A. Acto-myosin based response to stiffness and rigidity sensing. Cell. Adh. Migr. 5, 16–19 (2011).

    Article  Google Scholar 

  25. Mitrossilis, D. et al. Real-time single-cell response to stiffness. Proc. Natl Acad. Sci. USA 107, 16518–16523 (2010).

    Article  CAS  Google Scholar 

  26. Walcott, S. & Sun, S. X. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. Proc. Natl Acad. Sci. USA 107, 7757–7762 (2010).

    Article  CAS  Google Scholar 

  27. Webster, K. D., Crow, A. & Fletcher, D. A. An AFM-based stiffness clamp for dynamic control of rigidity. PLoS One 6, e17807 (2011).

    Article  CAS  Google Scholar 

  28. Montgomery, D. C. & Runger, G. C. Applied Statistics and Probability for Engineers 2nd edn (John Wiley, 1999).

    Google Scholar 

  29. Alexandrova, A. Y. et al. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PLoS One 3, e3234 (2008).

    Article  Google Scholar 

  30. Choi, C. K. et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10, 1039–1050 (2008).

    Article  CAS  Google Scholar 

  31. Winograd-Katz, S. E., Itzkovitz, S., Kam, Z. & Geiger, B. Multiparametric analysis of focal adhesion formation by RNAi-mediated gene knockdown. J. Cell Biol. 186, 423–436 (2009).

    Article  CAS  Google Scholar 

  32. Butler, J. P., Tolic-Norrelykke, I. M., Fabry, B. & Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Phys. Cell Phys. 282, C595–C605 (2002).

    Article  CAS  Google Scholar 

  33. Kam, Z., Zamir, E. & Geiger, B. Probing molecular processes in live cells by quantitative multidimensional microscopy. Trends Cell Biol. 11, 329–334 (2001).

    Article  CAS  Google Scholar 

  34. Zamir, E. et al. Molecular diversity of cell-matrix adhesions. J. Cell Sci. 112 (Pt 11), 1655–1669 (1999).

    Google Scholar 

  35. Beeler, J. F., LaRochelle, W. J., Chedid, M., Tronick, S. R. & Aaronson, S. A. Prokaryotic expression cloning of a novel human tyrosine kinase. Mol. Cell Biol. 14, 982–988 (1994).

    Article  CAS  Google Scholar 

  36. Vartiainen, M., Ojala, P. J., Auvinen, P., Peranen, J. & Lappalainen, P. Mouse A6/twinfilin is an actin monomer-binding protein that localizes to the regions of rapid actin dynamics. Mol. Cell Biol. 20, 1772–1783 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to B. Morgenstern for expert help in preparing this article for publication. This work was financially supported, in part, by the National Institutes of Health (NIH) Common Fund Nanomedicine Program (PN2 EY016586), the Israel Science Foundation, the Minerva Foundation, the Maurice Janin Fund and the De Benedetti Foundation-Cherasco. B.G. holds the Erwin Neter Professorial Chair in Cell and Tumor Biology. A.D.B. holds the Joseph Moss Professorial Chair in Biomedical Research.

Author information

Authors and Affiliations

Authors

Contributions

M.P-K. and A.L. participated in the design of the experiments, carried them out and analysed the data. R.K. and K.R. carried out the traction force microscopy analysis. A.M. and Z.K. contributed to the microscopy analysis, image processing and statistical analysis of the data. A.D.B. and B.G. supervised the project and participated in all of its aspects, including its design, data analysis and manuscript preparation.

Corresponding authors

Correspondence to Benjamin Geiger or Alexander D. Bershadsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 431 kb)

Supplementary Table 1

Supplementary Information (XLS 60 kb)

Supplementary Table 2

Supplementary Information (XLS 21 kb)

Supplementary Movie 1

Supplementary Information (MOV 61799 kb)

Supplementary Movie 2

Supplementary Information (MOV 16561 kb)

Supplementary Movie 3

Supplementary Information (MOV 388 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prager-Khoutorsky, M., Lichtenstein, A., Krishnan, R. et al. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat Cell Biol 13, 1457–1465 (2011). https://doi.org/10.1038/ncb2370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing