Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation

An Erratum to this article was published on 02 May 2012

This article has been updated

Abstract

Self-renewal of rodent embryonic stem cells is enhanced by partial inhibition of glycogen synthase kinase-3 (Gsk3; refs 1, 2). This effect has variously been attributed to stimulation of Wnt signalling by β-catenin1, stabilization of Myc protein3 and global de-inhibition of anabolic processes4. Here we demonstrate that β-catenin is not necessary for embryonic stem cell identity or expansion, but its absence eliminates the self-renewal response to Gsk3 inhibition. Responsiveness is fully restored by truncated β-catenin lacking the carboxy-terminal transactivation domain5. However, requirement for Gsk3 inhibition is dictated by expression of T-cell factor 3 (Tcf3) and mediated by direct interaction with β-catenin. Tcf3 localizes to many pluripotency genes6 in embryonic stem cells. Our findings confirm that Tcf3 acts as a transcriptional repressor and reveal that β-catenin directly abrogates Tcf3 function. We conclude that Gsk3 inhibition stabilizes the embryonic stem cell state primarily by reducing repressive influence on the core pluripotency network.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Suppression of Gsk3 mediates enhanced embryonic stem cell self-renewal but β-catenin is dispensable for embryonic stem cell maintenance.
Figure 2: β catΔ/− embryonic stem cells do not resist differentiation on Gsk3 inhibition.
Figure 3: β-catenin inhibits differentiation independently of its transcriptional activation domain.
Figure 4: β-catenin functions by abrogating Tcf3 repression.
Figure 5: Gsk3 inhibition relieves the core pluripotency network from repression by Tcf3 and complements Mek inhibition and/or Stat3 activation to stabilize embryonic stem cell self-renewal.

Change history

  • 27 March 2012

    In the version initially published, the received date was incorrect. The correct received date is 20 May 2010.

References

  1. 1

    Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Cartwright, P. et al. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132, 885–896 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Doble, B. W. & Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175–1186 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Hsu, S. C., Galceran, J. & Grosschedl, R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β -catenin. Mol. Cell Biol. 18, 4807–4818 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H. & Young, R. A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22, 746–755 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Clevers, H. Wnt/β -catenin signaling in development and disease. Cell 127, 469–480 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Behrens, J. et al. Functional interaction of β -catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Molenaar, M. et al. XTcf-3 transcription factor mediates β -catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β -catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Rubinfeld, B. et al. Binding of GSK3β to the APC- β -catenin complex and regulation of complex assembly. Science 272, 1023–1026 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Hanna, J. et al. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4, 513–524 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D. & Niwa, H. Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem. Biophys. Res. Commun. 343, 159–166 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Matsuda, T. et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 18, 4261–4269 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Burdon, T., Stracey, C., Chambers, I., Nichols, J. & Smith, A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev. Biol. 210, 30–43 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Pereira, L., Yi, F. & Merrill, B. J. Repression of nanog gene transcription by tcf3 limits embryonic stem cell self-renewal. Mol. Cell Biol. 26, 7479–7491 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Guo, G., Huang, Y., Humphreys, P., Wang, X. & Smith, A. A PiggyBac-based recessive screening method to identify pluripotency regulators. PLoS One 18, e18189 (2011).

    Article  Google Scholar 

  20. 20

    Haegel, H. et al. Lack of β -catenin affects mouse development at gastrulation. Development 121, 3529–3537 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Huelsken, J. et al. Requirement for β -catenin in anterior–posterior axis formation in mice. J. Cell Biol. 148, 567–578 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Bain, J. et al. The selectivity of protein kinase inhibitors; a further update. Biochem. J. 408, 297–315 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Doble, B. W., Patel, S., Wood, G. A., Kockeritz, L. K. & Woodgett, J. R. Functional redundancy of GSK- 3α and GSK- 3β in Wnt/ β -catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev. Cell 12, 957–971 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Lyashenko, N. et al. Differential requirement for the dual functions of β -catenin in embryonic stem cell self-renewal and germ layer formation. Nat. Cell Biol. doi:10.1038/ncb2260 (2011).

  26. 26

    Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Guo, G. et al. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063–1069 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Soncin, F. et al. Abrogation of E-cadherin mediated cell–cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal. Stem Cells 27, 2069–2080 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Anton, R., Kestler, H. A. & Kuhl, M. β -Catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Lett. 581, 5247–5254 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Arnold, S. J. et al. Brachyury is a target gene of the Wnt/ β -catenin signaling pathway. Mech. Dev. 91, 249–258 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Wray, J., Kalkan, T. & Smith, A. G. The ground state of pluripotency. Biochem. Soc. Trans. 38, 1027–1032 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Li, X. et al. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34970–34975 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Robson, P., Stein, P., Zhou, B., Schultz, R. M. & Baldwin, H. S. Inner cell mass-specific expression of a cell adhesion molecule (PECAM-1/CD31) in the mouse blastocyst. Dev. Biol. 234, 317–329 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Yi, F., Pereira, L. & Merrill, B. J. Tcf3 functions as a steady-state limiter of transcriptional programs of mouse embryonic stem cell self-renewal. Stem Cells 26, 1951–1960 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Tam, W. L. et al. T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells 26, 2019–2031 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Kelly, K. F. et al. β -catenin enhances Oct-4 activity and reinforcespluripotency through a TCF-independent mechanism. Cell Stem Cell 8, 214–227 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Moon, R. T. & Kimelman, D. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. Bioessays 20, 536–545 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    ten Berge, D. et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3, 508–518 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Brault, V. et al. Inactivation of the β -catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253–1264 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Lyashenko and C. Hartmann for discussion and exchange of unpublished data. We also thank A. Martinez-Arias for comments on the manuscript. We are grateful to B. Merrill (University of Illinois at Chicago, USA) for generously providing Tcf3 mutant embryonic stem cells and to B. Doble (Stem Cell and Cancer Research Institute, McMaster University, Canada) and J. Woodgett (Samuel Lunenfeld Research Institute, Mount Sinai Hospital and University of Toronto, Canada) for Gsk3 mutant embryonic stem cells. We thank R. Grosschedl for the β-catenin ΔC construct. Gsk3 inhibitors, compounds A–G, were provided by Pfizer. R. Walker and P. Humphreys supported flow cytometry and imaging, respectively. The study was financially supported by the Biotechnology and Biological Sciences Research Council and the Medical Research Council of the United Kingdom, the Wellcome Trust and the European Commission FP7 project EuroSyStem. S.G-L. was supported by a CONACYT Studentship. A.S. is a Medical Research Council Professor.

Author information

Affiliations

Authors

Contributions

J.W. carried out, analysed and interpreted experiments, T.K. created and validated the Rex1GFPd2 reporter, S.G-L. generated Cre–Ires–fluorescent protein plasmids, D.E. and R.K. generated floxed β-catenin embryonic stem cells, A.C. selected and provided Gsk3 inhibitors, and A.S. supervised the study and wrote the paper together with J.W.

Corresponding author

Correspondence to Austin Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1790 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wray, J., Kalkan, T., Gomez-Lopez, S. et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 13, 838–845 (2011). https://doi.org/10.1038/ncb2267

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing