Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ARFGAP1 promotes AP-2-dependent endocytosis

Subjects

Abstract

COPI (coat protein I) and the clathrin–AP-2 (adaptor protein 2) complex are well-characterized coat proteins, but a component that is common to these two coats has not been identified. The GTPase-activating protein (GAP) for ADP-ribosylation factor 1 (ARF1), ARFGAP1, is a known component of the COPI complex. Here, we show that distinct regions of ARFGAP1 interact with AP-2 and coatomer (components of the COPI complex). Selectively disrupting the interaction of ARFGAP1 with either of these two coat proteins leads to selective inhibition in the corresponding transport pathway. The role of ARFGAP1 in AP-2-regulated endocytosis has mechanistic parallels with its roles in COPI transport, as both its GAP activity and coat function contribute to promoting AP-2 transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions with ARFGAP1 and effects of its knockdown.
Figure 2: Distinct requirements for ARFGAP1 binding to coatomer versus AP-2 and clathrin.
Figure 3: Disrupting the interaction between ARFGAP1 and either coatomer or AP-2 leads to selective disruption in transport pathways.
Figure 4: Surveying transport pathways affected by the depletion of ARFGAP1.
Figure 5: The role of ARFGAP1 in coated-pit formation.
Figure 6: ARFGAP1 and AP-2 interact specifically with surface TfR.
Figure 7: Characterizing the binding of TfR by ARFGAP1 and AP-2.
Figure 8: The GAP activity of ARFGAP1 promotes TfR endocytosis.

Similar content being viewed by others

References

  1. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  Google Scholar 

  2. Cai, H., Reinisch, K. & Ferro-Novick, S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671–682 (2007).

    Article  CAS  Google Scholar 

  3. Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    Article  CAS  Google Scholar 

  4. McMahon, H. T. & Mills, I. G. COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr. Opin. Cell Biol. 16, 379–391 (2004).

    Article  CAS  Google Scholar 

  5. Pucadyil, T. J. & Schmid, S. L. Conserved functions of membrane active GTPases in coated vesicle formation. Science 325, 1217–1220 (2009).

    Article  CAS  Google Scholar 

  6. Hsu, V. W., Lee, S. Y. & Yang, J. S. The evolving understanding of COPI vesicle formation. Nat. Rev. Mol. Cell Biol. 10, 360–364 (2009).

    Article  CAS  Google Scholar 

  7. Waters, M. G., Serafini, T. & Rothman, J. E. ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349, 248–251 (1991).

    Article  CAS  Google Scholar 

  8. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  Google Scholar 

  9. Pearse, B. M. F. Coated vesicles from pig brain: purification and biochemical characterization. J. Mol. Biol. 97, 93–98 (1975).

    Article  CAS  Google Scholar 

  10. Pearse, B.M. & Robinson, M. S. Purification and properties of 100-kd proteins from coated vesicles and their reconstitution with clathrin. EMBO J. 3, 1951–1957 (1984).

    Article  CAS  Google Scholar 

  11. Maldonado-Baez, L. & Wendland, B. Endocytic adaptors: recruiters, coordinators and regulators. Trends Cell Biol. 16, 505–513 (2006).

    Article  CAS  Google Scholar 

  12. Ungewickell, E. J. & Hinrichsen, L. Endocytosis: clathrin-mediated membrane budding. Curr. Opin. Cell Biol. 19, 417–425 (2007).

    Article  CAS  Google Scholar 

  13. Traub, L. M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 10, 583–596 (2009).

    Article  CAS  Google Scholar 

  14. Hsu, V. W. & Yang, J. S. Mechanisms of COPI vesicle formation. FEBS Lett 583, 3758–3763 (2009).

    Article  CAS  Google Scholar 

  15. Miller, E. A. & Barlowe, C. Regulation of coat assembly–sorting things out at the ER. Curr. Opin. Cell Biol. 22, 447–453 (2010).

    Article  CAS  Google Scholar 

  16. D’Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7, 347–358 (2006).

    Article  Google Scholar 

  17. Casanova, J. E. Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8, 1476–1485 (2007).

    Article  CAS  Google Scholar 

  18. Inoue, H. & Randazzo, P. A. Arf GAPs and their interacting proteins. Traffic 8, 1465–1475 (2007).

    Article  CAS  Google Scholar 

  19. Yang, J. S. et al. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J. Cell Biol. 159, 69–78 (2002).

    Article  CAS  Google Scholar 

  20. Lee, S. Y., Yang, J. S., Hong, W., Premont, R. T. & Hsu, V. W. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J. Cell Biol. 168, 281–290 (2005).

    Article  CAS  Google Scholar 

  21. Schmid, E. M. et al. Role of the AP2 β-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol. 4, 1532–1548 (2006).

    Article  CAS  Google Scholar 

  22. Rawet, M., Levi-Tal, S., Szafer-Glusman, E., Parnis, A. & Cassel, D. ArfGAP1 interacts with coat proteins through tryptophan-based motifs. Biochem. Biophys. Res. Commun. 394, 553–557 (2010).

    Article  CAS  Google Scholar 

  23. Motley, A., Bright, N. A., Seaman, M. N. & Robinson, M. S. Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol. 162, 909–918 (2003).

    Article  CAS  Google Scholar 

  24. Saitoh, A., Shin, H. W., Yamada, A., Waguri, S. & Nakyryama, K. Three homologous ArfGAPs participate in coat protein I-mediated transport. J. Biol. Chem. 284, 13948–13957 (2009).

    Article  CAS  Google Scholar 

  25. Mishra, S. K. et al. Dual engagement regulation of protein interactions with the AP-2 adaptor α appendage. J. Biol. Chem. 279, 46191–46203 (2004).

    Article  CAS  Google Scholar 

  26. Praefcke, G. J. et al. Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis. EMBO J. 23, 4371–4383 (2004).

    Article  CAS  Google Scholar 

  27. Cole, N. B., Ellenberg, J., Song, J., DiEuliis, D. & Lippincott-Schwartz, J. Retrograde transport of Golgi-localized proteins to the ER. J. Cell Biol. 140, 1–15 (1998).

    Article  CAS  Google Scholar 

  28. Yang, J. S. et al. A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J. 24, 4133–4143 (2005).

    Article  CAS  Google Scholar 

  29. Yang, J. S. et al. A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat. Cell Biol. 10, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  30. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  Google Scholar 

  31. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  Google Scholar 

  32. Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat. Cell Biol. 7, 570–580 (2005).

    Article  CAS  Google Scholar 

  33. Guo, Q., Vasile, E. & Krieger, M. Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by ε-COP. J. Cell Biol. 125, 1213–1224 (1994).

    Article  CAS  Google Scholar 

  34. Dascher, C. & Balch, W. E. Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437–1448 (1994).

    CAS  PubMed  Google Scholar 

  35. Weixel, K. M. & Bradbury, N. A. Mu 2 binding directs the cystic fibrosis transmembrane conductance regulator to the clathrin-mediated endocytic pathway. J. Biol. Chem. 276, 46251–46259 (2001).

    Article  CAS  Google Scholar 

  36. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    Article  CAS  Google Scholar 

  37. Loerke, D. et al. Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol. 7, 628–639 (2009).

    Article  Google Scholar 

  38. Mettlen, M., Loerke, D., Yarar, D., Danuser, G. & Schmid, S. L. Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J. Cell Biol. 188, 919–933 (2010).

    Article  CAS  Google Scholar 

  39. Boucrot, E., Saffarian, S., Zhang, R. & Kirchhausen, T. Roles of AP-2 in clathrin-mediated endocytosis. PloS ONE 5, e10597 (2010).

    Article  Google Scholar 

  40. Collawn, J. F. et al. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63, 1061–1072 (1990).

    Article  CAS  Google Scholar 

  41. McGraw, T. E., Pytowski, B., Arzt, J. & Ferrone, C. Mutagenesis of the human transferrin receptor: two cytoplasmic phenylalanines are required for efficient internalization and a second-site mutation is capable of reverting an internalization-defective phenotype. J. Cell Biol. 112, 853–861 (1991).

    Article  CAS  Google Scholar 

  42. Alvarez, E., Girones, N. & Davis, R. J. Intermolecular disulfide bonds are not required for the expression of the dimeric state and functional activity of the transferrin receptor. EMBO J. 8, 2231–2240 (1989).

    Article  CAS  Google Scholar 

  43. Szafer, E. et al. Role of coatomer and phospholipids in GTPase-activating protein-dependent hydrolysis of GTP by ADP-ribosylation factor-1. J. Biol. Chem. 275, 23615–23619 (2000).

    Article  CAS  Google Scholar 

  44. Krauss, M. et al. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J. Cell Biol. 162, 113–124 (2003).

    Article  CAS  Google Scholar 

  45. Palacios, F., Schweitzer, J. K., Boshans, R. L. & D’Souza-Schorey, C. ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat. Cell Biol. 4, 929–936 (2002).

    Article  CAS  Google Scholar 

  46. Paleotti, O. et al. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J. Biol. Chem. 280, 21661–21666 (2005).

    Article  CAS  Google Scholar 

  47. Goldberg, J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100, 671–679 (2000).

    Article  CAS  Google Scholar 

  48. Jackson, L. P. et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141, 1220–1229 (2010).

    Article  CAS  Google Scholar 

  49. Rapoport, I. et al. Regulatory interactions in the recognition of endocytic sorting signals by AP-2 complexes. EMBO J. 16, 2240–2250 (1997).

    Article  CAS  Google Scholar 

  50. Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521–532 (1999).

    Article  CAS  Google Scholar 

  51. Lanoix, J. et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J. 18, 4935–4948 (1999).

    Article  CAS  Google Scholar 

  52. Matsui, W. & Kirchhausen, T. Stabilization of clathrin coats by the core of the clathrin-associated protein complex AP-2. Biochemistry 29, 10791–10798 (1990).

    Article  CAS  Google Scholar 

  53. Li, J. et al. An ACAP1-containing clathrin coat complex for endocytic recycling. J. Cell Biol. 178, 453–464 (2007).

    Article  CAS  Google Scholar 

  54. Dai, J. et al. ACAP1 promotes endocytic recycling by recognizing recycling sorting signals. Dev. Cell 7, 771–776 (2004).

    Article  CAS  Google Scholar 

  55. Trucco, A. et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat. Cell Biol. 6, 1071–1081 (2004).

    Article  CAS  Google Scholar 

  56. Peter, K. et al. Ablation of internalization signals in the carboxyl-terminal tail of the cystic fibrosis transmembrane conductance regulator enhances cell surface expression. J. Biol. Chem. 277, 49952–49957 (2002).

    Article  CAS  Google Scholar 

  57. Che, M. M., Nie, Z. & Randazzo, P. A. Assays and properties of the Arf GAPs AGAP1, ASAP1, and Arf GAP1. Methods Enzymol. 404, 147–163 (2005).

    Article  CAS  Google Scholar 

  58. Saffarian, S. & Kirchhausen, T. Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane. Biophys. J. 94, 2333–2342 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Wendland for critical comments. This work was financially supported by grants from the National Institutes of Health to V.W.H. (GM058615 and GM073016), T.K. (GM075252 and U54 AI057159—NERCE Imaging Resource) and J.F.C. (DK060065). A.L. was financially supported by the Telethon (Italy) and AIRC (Italy). H.G. was supported by a Marie Curie Fellowship. E.C. was supported by a GlaxoSmithKline fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.B., H.G., G.T., E.C., J-S.Y., J.L., G.V.B., Z.N., L.F. and R.L. carried out experiments and data analyses. V.W.H., A.L., T.K. and J.F.C. supervised the work. V.W.H., A.L., H.G. and M.B. wrote the manuscript.

Corresponding author

Correspondence to Victor W. Hsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, M., Gad, H., Turacchio, G. et al. ARFGAP1 promotes AP-2-dependent endocytosis. Nat Cell Biol 13, 559–567 (2011). https://doi.org/10.1038/ncb2221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing