Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The orphan nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells

Abstract

Successful haematopoiesis requires long-term retention of haematopoietic stem cells (HSCs) in a quiescent state. The transcriptional regulation of stem cell quiescence, especially by factors with specific functions in HSCs, is only beginning to be understood. Here, we demonstrate that Nurr1, a nuclear receptor transcription factor, has such a regulatory role. Overexpression of Nurr1 drives early haematopoietic progenitors into quiescence. When stem cells overexpressing Nurr1 are transplanted into lethally irradiated mice, they localize to the bone marrow, but do not contribute to regeneration of the blood system. Furthermore, the loss of only one allele of Nurr1 is sufficient to induce HSCs to enter the cell cycle and proliferate. Molecular analysis revealed an association between Nurr1 overexpression and upregulation of the cell-cycle inhibitor p18 (also known as INK4C), suggesting a mechanism by which Nurr1 could regulate HSC quiescence. Our findings provide critical insight into the transcriptional control mechanisms that determine whether HSCs remain dormant or enter the cell cycle and begin to proliferate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nurr1 is highly expressed in quiescent HSCs (Hoechst 33342 side-population cells that are also c-Kit+, Sca1+ and Lin; SP-KSL) and its overexpression in 32D cells results in a proliferative block.
Figure 2: Overexpression of Nurr1 in bone-marrow cells reversibly blocks proliferation.
Figure 3: Nurr1 overexpression leads to reduced cell-cycle proliferation.
Figure 4: Dose effect of Nurr1 on expression of cell-cycle inhibitors and rescue of the Nurr1 phenotype by p18 expression.

Similar content being viewed by others

References

  1. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Min, I. M. et al. The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2, 380–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Feng, C. G., Weksberg, D. C., Taylor, G. A., Sher, A. & Goodell, M. A. The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2, 83–89 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, Y. et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dykstra, B. et al. High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal. Proc. Natl Acad. Sci. USA 103, 8185–8190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng, T., Rodrigues, N., Dombkowski, D., Stier, S. & Scadden, D. T. Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat. Med. 6, 1235–1240 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Malumbres, M. et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118, 493–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Viatour, P. et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 3, 416–428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ichikawa, M. et al. AML1/Runx1 negatively regulates quiescent hematopoietic stem cells in adult hematopoiesis. J. Immunol. 180, 4402–4408 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hock, H. et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431, 1002–1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Venezia, T. A. et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2, e301 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chambers, S. M. et al. Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell 1, 578–591 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maruyama, K. et al. The NGFI-B subfamily of the nuclear receptor superfamily (review). Int. J. Oncol. 12, 1237–1243 (1998).

    CAS  PubMed  Google Scholar 

  16. Milbrandt, J. Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1, 183–188 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Ohkura, N., Hijikuro, M., Yamamoto, A. & Miki, K. Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem. Biophys. Res. Commun. 205, 1959–1965 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Law, S. W., Conneely, O. M., DeMayo, F. J. & O'Malley, B. W. Identification of a new brain-specific transcription factor, NURR1. Mol. Endocrinol. 6, 2129–2135 (1992).

    CAS  PubMed  Google Scholar 

  19. Mullican, S. E. et al. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat. Med. 13, 730–735 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Saucedo-Cardenas, O. et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl Acad. Sci. USA 95, 4013–4018 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zetterstrom, R. H. et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Ke, N. et al. Nuclear hormone receptor NR4A2 is involved in cell transformation and apoptosis. Cancer Res. 64, 8208–8212 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Castro, D. S. et al. Induction of cell cycle arrest and morphological differentiation by Nurr1 and retinoids in dopamine MN9D cells. J. Biol. Chem. 276, 43277–43284 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Sieburg, H. B. et al. The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107, 2311–2316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Camargo, F. D., Green, R., Capetanaki, Y., Jackson, K. A. & Goodell, M. A. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat. Med. 9, 1520–1527 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Nsegbe, E. et al. Congenital hypoventilation and impaired hypoxic response in Nurr1 mutant mice. J. Physiol. 556, 43–59 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takeshita, M. et al. AML1–Evi-1 specifically transforms hematopoietic stem cells through fusion of the entire Evi-1 sequence to AML1. Leukemia 22, 1241–1249 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Kubota, Y., Osawa, M., Jakt, L. M., Yoshikawa, K. & Nishikawa, S. Necdin restricts proliferation of hematopoietic stem cells during hematopoietic regeneration. Blood 114, 4383–4392 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Wilson, T. E., Fahrner, T. J., Johnston, M. & Milbrandt, J. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252, 1296–1300 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Maira, M., Martens, C., Philips, A. & Drouin, J. Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol. Cell Biol. 19, 7549–7557 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilson, T. E., Fahrner, T. J. & Milbrandt, J. The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor–DNA interaction. Mol. Cell Biol. 13, 5794–5804 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yuan, Y., Shen, H., Franklin, D. S., Scadden, D. T. & Cheng, T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat. Cell Biol. 6, 436–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y. Y. et al. Simultaneous knockdown of p18INK4C, p27Kip1 and MAD1 via RNA interference results in the expansion of long-term culture-initiating cells of murine bone marrow cells in vitro. Acta Biochim. Biophys. Sin. (Shanghai) 40, 711–720 (2008).

    Article  Google Scholar 

  34. Yu, H., Yuan, Y., Shen, H. & Cheng, T. Hematopoietic stem cell exhaustion impacted by p18 INK4C and p21 Cip1/Waf1 in opposite manners. Blood 107, 1200–1206 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saijo, K. et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Essers, M. A. et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Martinat, C. et al. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc. Natl Acad. Sci. USA 103, 2874–2879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jacobs, F. M. et al. Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 136, 531–540 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Lacorazza, H. D. et al. The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell 9, 175–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Ling, K. W. et al. GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. J. Exp. Med. 200, 871–882 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Naviaux, R. K., Costanzi, E., Haas, M. & Verma, I. M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kotani, H. et al. Improved methods of retroviral vector transduction and production for gene therapy. Hum. Gene Ther. 5, 19–28 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Boles, E. J. Dettman, and J. Gilbert for helpful discussion and suggestions, and T. Perlmann for comments on the manuscript. This work was supported by NIH grants DK58192, CA111411, CA126752, EB005173 and AG034451, as well as Ellison Foundation grant AG-SS178706, and the Dan L. Duncan Cancer Center. T. Cheng provided p18-null mice. We also thank S. Watowich for 32D cells.

Author information

Authors and Affiliations

Authors

Contributions

This study was developed and designed by O.S., who also performed the experiments and co-wrote the manuscript. G.L.L. and R.M. helped carry out the experiments. O.M.C. provided Nurr1−/− mice and discussion. M.A.G. designed experiments and co-wrote the manuscript.

Corresponding author

Correspondence to Margaret A. Goodell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 747 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirin, O., Lukov, G., Mao, R. et al. The orphan nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells. Nat Cell Biol 12, 1213–1219 (2010). https://doi.org/10.1038/ncb2125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing