Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis

A Corrigendum to this article was published on 01 February 2010

This article has been updated

Abstract

Store-operated Ca2+ entry (SOCE) and Ca2+ release-activated Ca2+ currents (Icrac) are strongly suppressed during cell division, the only known physiological situation in which Ca2+ store depletion is uncoupled from the activation of Ca2+ influx. We found that the endoplasmic reticulum (ER) Ca2+ sensor STIM1 failed to rearrange into near-plasma membrane puncta in mitotic cells, a critical step in the SOCE-activation pathway. We also found that STIM1 from mitotic cells is recognized by the phospho-specific MPM-2 antibody, suggesting that STIM1 is phosphorylated during mitosis. Removal of ten MPM-2 recognition sites by truncation at amino acid 482 abolished MPM-2 recognition of mitotic STIM1, and significantly rescued STIM1 rearrangement and SOCE response in mitosis. We identified Ser 486 and Ser 668 as mitosis-specific phosphorylation sites, and STIM1 containing mutations of these sites to alanine also significantly rescued mitotic SOCE. Therefore, phosphorylation of STIM1 at Ser 486 and Ser 668, and possibly other sites, underlies suppression of SOCE during mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SOCE suppression in mitotic cells is independent of STIM1 or Orai1 expression.
Figure 2: STIM1 localization patterns are altered in mitosis.
Figure 3: STIM1 is phosphorylated during mitosis.
Figure 4: 482STOP rescues SOCE and Icrac responses in mitotic cells.
Figure 5: Phosphorylation of Ser 486 and Ser 668 contributes to SOCE suppression during mitosis.

Similar content being viewed by others

Change history

  • 12 January 2010

    In this letter, statements regarding the suppression of SOCE during mitosis have been altered from those initially published, Two sentences have been altered, an addtional reference added and references in the Methods renumbered. This has been corrected in both the HTML and PDF versions of the article.

References

  1. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  2. Putney, J. W. A model for receptor-regulated calcium entry. Cell Calcium 7, 1–12 (1986).

    Article  CAS  Google Scholar 

  3. Parekh, A. B. & Putney, J. W. Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

    Article  CAS  Google Scholar 

  4. Ng, S. W., Di Capite, J., Singaravelu, K. & Parekh, A. B. Sustained activation of the tyrosine kinase Syk by antigen in mast cells requires local Ca2+ influx through Ca2+ release-activated Ca2+ channels. J. Biol. Chem. 283, 31348–31355 (2008).

    Article  CAS  Google Scholar 

  5. Parekh, A. B. Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function. J. Physiol. 586, 3043–3054 (2008).

    Article  CAS  Google Scholar 

  6. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–355 (1992).

    Article  CAS  Google Scholar 

  7. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    Article  CAS  Google Scholar 

  8. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  Google Scholar 

  9. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  Google Scholar 

  10. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    Article  CAS  Google Scholar 

  11. Zhang, S. L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl Acad. Sci. USA 103, 9357–9362 (2006).

    Article  CAS  Google Scholar 

  12. Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    Article  CAS  Google Scholar 

  13. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    Article  CAS  Google Scholar 

  14. Lewis, R. S. The molecular choreography of a store-operated calcium channel. Nature 446, 284–287 (2007).

    Article  CAS  Google Scholar 

  15. Putney, J. W. Jr New molecular players in capacitative Ca2+ entry. J. Cell Sci. 120, 1959–1965 (2007).

    Article  CAS  Google Scholar 

  16. Preston, S. F., Sha'afi, R. I. & Berlin, R. D. Regulation of Ca2+ influx during mitosis: Ca2+ influx and depletion of intracellular Ca2+ stores are coupled in interphase but not mitosis. Cell Regul. 2, 915–925 (1991).

    Article  CAS  Google Scholar 

  17. Preston, G. A., Barrett, J. C., Biermann, J. A. & Murphy, E. Effects of alterations in calcium homeostasis on apoptosis during neoplastic progression. Cancer Res. 57, 537–542 (1997).

    CAS  PubMed  Google Scholar 

  18. Volpi, M. & Berlin, R. D. Intracellular elevations of free calcium induced by activation of histamine H1 receptors in interphase and mitotic HeLa cells: hormone signal transduction is altered during mitosis. J. Cell Biol. 107, 2533–2539 (1988).

    Article  CAS  Google Scholar 

  19. Tani, D., Monteilh-Zoller, M. K., Fleig, A. & Penner, R. Cell cycle-dependent regulation of store-operated I(CRAC) and Mg2+-nucleotide-regulated MagNuM (TRPM7) currents. Cell Calcium 41, 249–260 (2007).

    Article  CAS  Google Scholar 

  20. Hepler, P. K. The role of calcium in cell division. Cell Calcium 16, 322–330 (1994).

    Article  CAS  Google Scholar 

  21. Whitaker, M. & Larman, M. G. Calcium and mitosis. Semin. Cell Dev. Biol. 12, 53–58 (2001).

    Article  CAS  Google Scholar 

  22. Whitaker, M. Calcium microdomains and cell cycle control. Cell Calcium 40, 585–592 (2006).

    Article  CAS  Google Scholar 

  23. Krek, W. & DeCaprio, J. A. Cell synchronization. Methods Enzymol. 254, 114–124 (1995).

    Article  CAS  Google Scholar 

  24. Grigoriev, I. et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177–182 (2008).

    Article  CAS  Google Scholar 

  25. Smyth, J. T., DeHaven, W. I., Bird, G. S. & Putney, J. W. Jr Role of the microtubule cytoskeleton in the function of the store-operated Ca2+channel activator STIM1. J. Cell Sci. 120, 3762–3771 (2007).

    Article  CAS  Google Scholar 

  26. Russa, A. D. et al. Microtubule remodeling mediates the inhibition of store-operated calcium entry (SOCE) during mitosis in COS-7 cells. Arch. Histol. Cytol. 71, 249–263 (2008).

    Article  CAS  Google Scholar 

  27. Manji, S. S. et al. STIM1: a novel phosphoprotein located at the cell surface. Biochim. Biophys. Acta 1481, 147–155 (2000).

    Article  CAS  Google Scholar 

  28. Williams, R. T. et al. Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem. J. 357, 673–685 (2001).

    Article  CAS  Google Scholar 

  29. Che, S., Weil, M. M., Nelman-Gonzalez, M., Ashorn, C. L. & Kuang, J. MPM-2 epitope sequence is not sufficient for recognition and phosphorylation by ME kinase-H. FEBS Lett. 413, 417–423 (1997).

    Article  CAS  Google Scholar 

  30. Ding, M., Feng, Y. & Vandre, D. D. Partial characterization of the MPM-2 phosphoepitope. Exp. Cell Res. 231, 3–13 (1997).

    Article  CAS  Google Scholar 

  31. Westendorf, J. M., Rao, P. N. & Gerace, L. Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc. Natl Acad. Sci. USA 91, 714–718 (1994).

    Article  CAS  Google Scholar 

  32. Yuan, J. P. et al. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nature Cell Biol. (2009).

  33. Park, C. Y. et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876–890 (2009).

    Article  CAS  Google Scholar 

  34. Muik, M. et al. A cytosolic homomerization and a modulatory domain within STIM1 C-terminus determine coupling to ORAI1 channels. J. Biol. Chem. 284, 8421–8426 (2009).

    Article  CAS  Google Scholar 

  35. Kawasaki, T., Lange, I. & Feske, S. A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem. Biophys. Res. Commun. (2009).

  36. Liou, J., Fivaz, M., Inoue, T. & Meyer, T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl Acad. Sci. USA 104, 9301–9306 (2007).

    Article  CAS  Google Scholar 

  37. Machaca, K. & Huan, S. Store-operated calcium entry inactivates at the germinal vesicle breakdown stage of Xenopus meiosis. J. Biol. Chem. 275, 38710–38715 (2000).

    Article  CAS  Google Scholar 

  38. DeHaven, W. I., Smyth, J. T., Boyles, R. R. & Putney, J. W. Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J. Biol. Chem. 282, 17548–17556 (2007).

    Article  CAS  Google Scholar 

  39. Smyth, J. T., DeHaven, W. I., Bird, G. S. & Putney, J. W. Jr Ca2+-store-dependent and -independent reversal of Stim1 localization and function. J. Cell Sci. 121, 762–772 (2008).

    Article  CAS  Google Scholar 

  40. Choi, J. H., Williams, J., Cho, J., Falck, J. R. & Shears, S. B. Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J.Biol. Chem. 282, 30763–30775 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Tucker and H. Rutledge for assistance with confocal microscopy and C. Bortner and M. Sifre for help with flow cytometry. C. Williams and D. Miller reviewed the manuscript and offered helpful suggestions. This work was supported by the Intramural Program, National Institute of Environmental Health Sciences, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

J.T.S. and J.G.P. performed Ca2+ measurements; J.T.S. and W.I.D. performed electrophysiology; J.T.S. performed confocal microscopy; J.T.S. and M.F. performed biochemistry; J.T.S. and R.R.B. performed molecular biology; J.G.W. and K.L.J. performed mass spectrometry. All authors performed data analysis, and J.T.S., W.I.D., J.G.W. and J.W.P. performed project planning.

Corresponding author

Correspondence to James W. Putney Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2041 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smyth, J., Petranka, J., Boyles, R. et al. Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nat Cell Biol 11, 1465–1472 (2009). https://doi.org/10.1038/ncb1995

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1995

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing