Letter | Published:

The CDK4–pRB–E2F1 pathway controls insulin secretion

Nature Cell Biology volume 11, pages 10171023 (2009) | Download Citation

Subjects

Abstract

CDK4–pRB–E2F1 cell-cycle regulators are robustly expressed in non-proliferating β cells, suggesting that besides the control of β-cell number the CDK4–pRB–E2F1 pathway has a role in β-cell function. We show here that E2F1 directly regulates expression of Kir6.2, which is a key component of the KATP channel involved in the regulation of glucose-induced insulin secretion. We demonstrate, through chromatin immunoprecipitation analysis from tissues, that Kir6.2 expression is regulated at the promoter level by the CDK4–pRB–E2F1 pathway. Consistently, inhibition of CDK4, or genetic inactivation of E2F1, results in decreased expression of Kir6.2, impaired insulin secretion and glucose intolerance in mice. Furthermore we show that rescue of Kir6.2 expression restores insulin secretion in E2f1−/− β cells. Finally, we demonstrate that CDK4 is activated by glucose through the insulin pathway, ultimately resulting in E2F1 activation and, consequently, increased expression of Kir6.2. In summary we provide evidence that the CDK4–pRB–E2F1 regulatory pathway is involved in glucose homeostasis, defining a new link between cell proliferation and metabolism.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

ArrayExpress

References

  1. 1.

    et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

  2. 2.

    et al. Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep. 3, 641–645 (2002).

  3. 3.

    & The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826 (2005).

  4. 4.

    et al. A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell 16, 399–411 (2004).

  5. 5.

    et al. E2Fs regulate adipocyte differentiation. Dev. Cell 3, 39–49 (2002).

  6. 6.

    et al. Impaired pancreatic growth, β cell mass, and β cell function in E2F1−/− mice. J. Clin. Invest. 113, 1288–1295 (2004).

  7. 7.

    , & The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic β-cells. J. Mol. Endocrinol. 22, 113–123 (1999).

  8. 8.

    et al. Evidence for direct physical association between a K+ channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K+ channel. Mol. Cell Biol. 18, 1652–1659 (1998).

  9. 9.

    Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8, 28–35 (1998).

  10. 10.

    , , & Expression profiling of pancreatic β cells: glucose regulation of secretory and metabolic pathway genes. Proc. Natl Acad. Sci. USA 97, 5773–5778 (2000).

  11. 11.

    et al. Cyclin A is a mediator of p120E4F-dependent cell cycle arrest in G1. Mol. Cell Biol. 21, 2956–2966 (2001).

  12. 12.

    , , & Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol. Cell 1, 933–938 (1998).

  13. 13.

    et al. Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic β cells. Mol. Cell 7, 559–570 (2001).

  14. 14.

    et al. Diet-induced glucose intolerance in mice with decreased β-cell ATP-sensitive K+ channels. Diabetes 53, 3159–3167 (2004).

  15. 15.

    et al. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 283, E1178–1184 (2002).

  16. 16.

    et al. Akt induces β-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55, 318–325 (2006).

  17. 17.

    et al. Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth. Mol. Cell Biol. 25, 3752–3762 (2005).

  18. 18.

    & β cell replication is the primary mechanism for maintaining postnatal β cell mass. J. Clin. Invest. 114, 963–968 (2004).

  19. 19.

    et al. Differential effects of p27 in regulation of β-cell mass during development, neonatal period, and adult life. Diabetes 55, 3520–3528 (2006).

  20. 20.

    et al. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nature Med. 11, 175–182 (2005).

  21. 21.

    et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

  22. 22.

    et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

  23. 23.

    et al. Reduced β-cell mass and altered glucose sensing impair insulin-secretory function in βIRKO mice. Am. J. Physiol. Endocrinol. Metab. 286, E41–E49 (2004).

  24. 24.

    et al. Insulin receptors in β cells are critical for islet compensatory growth response to insulin resistance. Proc. Natl Acad. Sci. USA 104, 8977–8982 (2007).

  25. 25.

    , & Insulin feedback action on pancreatic β cell function. FEBS Lett. 532, 1–6 (2002).

  26. 26.

    et al. Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor γ. Mol. Cell Biol. 25, 9985–9995 (2005).

  27. 27.

    et al. Peroxisome proliferator-activated receptor γ regulates E-cadherin expression and inhibits growth and invasion of prostate cancer. Mol. Cell Biol. 26, 7561–7574 (2006).

  28. 28.

    et al. Pancreatic-duodenal homeoBox 1 regulates expression of liver receptor homolog 1 during pancreas development. Mol. Cell Biol. 23, 6713–6724 (2003).

  29. 29.

    et al. Cdk4 promotes adipogenesis through PPARγ activation. Cell Metab. 2, 239–249 (2005).

Download references

Acknowledgements

We thank K.H. Kaestner (pGL3–Kir6.2–Luc), S. Seino and Y. Kurachi (pCDNA3–Kir6.2) for the gift of materials; I. Ait Arssa, M. Brissac, C. Clapé, D. Greuet, C. Henriquet and S. Hure for excellent technical help; L. Le Cam. Members of the Fajas lab are acknowledged for support and discussions. This work was supported by grants from Agence Nationale pour la Recherche (ANR physio2006), INSERM-Association Française des Diabétiques (PNR-Diabète), Association pour la Recherche contre le Cancer, and Fondation pour la Recherche Médicale. E.B. is supported by a grant form the Ministère de l'Enseignement Supérieur et de la Recherche, C.C. is supported by a grant from the Agence Nationale pour la Recherche.

Author information

Author notes

    • Jean-Sébastien Annicotte
    •  & Emilie Blanchet

    These authors contributed equally to this work.

Affiliations

  1. INSERM, U834, Montpellier, F-34298, France.

    • Jean-Sébastien Annicotte
    • , Emilie Blanchet
    • , Carine Chavey
    • , Irena Iankova
    • , Jacques Teyssier
    •  & Lluis Fajas
  2. IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France. INSERM, U896, Montpellier, F-34298, France. Univ Montpellier1, Montpellier, F-34298, France; CRLC Val d'Aurelle Paul Lamarque, Montpellier, F-34298, France

    • Jean-Sébastien Annicotte
    • , Emilie Blanchet
    • , Carine Chavey
    • , Irena Iankova
    • , Jacques Teyssier
    •  & Lluis Fajas
  3. CNRS, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, F-34094, France. INSERM, U661, Equipe AVENIR, Montpellier, F-34094, France. Univ Montpellier1, 2, Montpellier, F-34094, France;

    • Safia Costes
    •  & Stéphane Dalle
  4. Centre Hospitalier Universitaire, Institute for Research in Biotherapy, Hôpital Saint Eloi, Montpellier, F-34295, France.

    • Said Assou
  5. Institut de Génétique Moléculaire, Montpellier, F-34293, France; CNRS, UMR5535, Montpellier, F-34293, France; Univ Montpellier 2, Montpellier, F-34293, France.

    • Claude Sardet
  6. Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, F-34295, France.

    • Lluis Fajas

Authors

  1. Search for Jean-Sébastien Annicotte in:

  2. Search for Emilie Blanchet in:

  3. Search for Carine Chavey in:

  4. Search for Irena Iankova in:

  5. Search for Safia Costes in:

  6. Search for Said Assou in:

  7. Search for Jacques Teyssier in:

  8. Search for Stéphane Dalle in:

  9. Search for Claude Sardet in:

  10. Search for Lluis Fajas in:

Contributions

J-S. A. and L.F designed the study; J-S. A., E.B., C.C., I.I., S.C., S.A. and J.T performed the experiments; S.D. and C.S. provided reagents and data; J-S. A. and L.F wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Lluis Fajas.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

Excel files

  1. 1.

    Supplementary Information

    Supplementary Table 1

  2. 2.

    Supplementary Information

    Supplementary Table 2

  3. 3.

    Supplementary Information

    Supplementary Table 3

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ncb1915

Further reading