Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The DNA damage response at eroded telomeres and tethering to the nuclear pore complex


The ends of linear eukaryotic chromosomes are protected by telomeres, which serve to ensure proper chromosome replication and to prevent spurious recombination at chromosome ends. In this study, we show by single cell analysis that in the absence of telomerase, a single short telomere is sufficient to induce the recruitment of checkpoint and recombination proteins. Notably, a DNA damage response at eroded telomeres starts many generations before senescence and is characterized by the recruitment of Cdc13 (cell division cycle 13), replication protein A, DNA damage checkpoint proteins and the DNA repair protein Rad52 into a single focus. Moreover, we show that eroded telomeres, although remaining at the nuclear periphery, move to the nuclear pore complex. Our results link the DNA damage response at eroded telomeres to changes in subnuclear localization and suggest the existence of collapsed replication forks at eroded telomeres.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Localization of Cdc13 and Rad52 to short telomeres.
Figure 2: Cdc13–Rad52 focus formation correlates with short telomeres and single-stranded DNA formation.
Figure 3: Recruitment of Cdc13, checkpoint and DNA-repair proteins to telomeres in senescing cells.
Figure 4: Eroded telomeres relocalize to the nuclear pore complex.
Figure 5: Tethering of telomeres to the NPC in senescing cells.


  1. 1

    Gilson, E. & Geli, V. How telomeres are replicated. Nature Rev. Mol. Cell Biol. 8, 825–838 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Wellinger, R. J., Wolf, A. J. & Zakian, V. A. Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 72, 51–60 (1993).

    CAS  Article  Google Scholar 

  3. 3

    Larrivee, M., LeBel, C. & Wellinger, R. J. The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev. 18, 1391–1396 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Vodenicharov, M. D. & Wellinger, R. J. DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol. Cell 24, 127–137 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Bertuch, A. A. & Lundblad, V. The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol. Cell. Biol. 23, 8202–8215 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Negrini, S., Ribaud, V., Bianchi, A. & Shore, D. DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation. Genes Dev. 21, 292–302 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Longhese, M. P. DNA damage response at functional and dysfunctional telomeres. Genes Dev. 22, 125–140 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Hug, N. & Lingner, J. Telomere length homeostasis. Chromosoma 115, 413–425 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Lundblad, V. & Szostak, J. W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633–643 (1989).

    CAS  Article  Google Scholar 

  10. 10

    Grandin, N., Bailly, A. & Charbonneau, M. Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion. Biol. Cell 97, 799–814 (2005).

    CAS  Article  Google Scholar 

  11. 11

    d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Bhattacharyya, M. K. & Lustig, A. J. Telomere dynamics in genome stability. Trends Biochem. Sci. 31, 114–122 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Le, S., Moore, J. K., Haber, J. E. & Greider, C. W. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143–152 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Krogh, B. & Symington, L. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Lisby, M., Barlow, J. H., Burgess, R. C. & Rothstein, R. Choreography of the DNA damage response; spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Lisby, M., Mortensen, U. H. & Rothstein, R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nature Cell Biol. 5, 572–577 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Marcand, S., Brevet, V. & Gilson, E. Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J. 18, 3509–3519 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134, 1349–1363 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Polotnianka, R. M., Li, J. & Lustig, A. J. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol. 8, 831–834 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Adams Martin, A., Dionne, I., Wellinger, R. J. & Holm, C. The function of DNA polymerase alpha at telomeric G tails is important for telomere homeostasis. Mol. Cell. Biol. 20, 786–796 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Doye, V., Wepf, R. & Hurt, E. C. A novel nuclear pore protein Nup133p with distinct roles in poly(A)+ RNA transport and nuclear pore distribution. EMBO J. 13, 6062–6075 (1994).

    CAS  Article  Google Scholar 

  23. 23

    Nugent, C. I., Hughes, T. R., Lue, N. F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Lin, J. J. & Zakian, V. A. The Saccharomyces CDC13 protein is a single-strand TG1–3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. USA 93, 13760–13765 (1996).

    CAS  Article  Google Scholar 

  25. 25

    Hackett, J. A. & Greider, C. W. End resection initiates genomic instability in the absence of telomerase. Mol. Cell. Biol. 23, 8450–8461 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Chang, M., Arneric, M. & Lingner, J. Telomerase repeat addition processivity is increased at critically short telomeres in a Tel1-dependent manner in Saccharomyces cerevisiae. Genes Dev. 21, 2485–2494 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597–602 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics. (Cold Spring Harbor Laboratory, 1986).

    Google Scholar 

  29. 29

    Belli, G., Gari, E., Aldea, M. & Herrero, E. Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast 14, 1127–1138 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Lisby, M., Rothstein, R. & Mortensen, U. H. Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl. Acad. Sci. USA 98, 8276–8282 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Forstemann, K., Hoss, M. & Lingner, J. Telomerase-dependent repeat divergence at the 3′ ends of yeast telomeres. Nucl. Acids Res. 28, 2690–2694 (2000).

    CAS  Article  Google Scholar 

Download references


We thank members of the Géli, Gilson and Lisby laboratories for helpful discussions concerning this work, A. Nicolas, X. Zhao, R. Rothstein, B. Palancade, V. Lundblad and R. Wellinger for sharing reagents and for fruitful discussions, S. Larose and R. Wellinger, who engineered the pTet-off-TLC1 construct, and S. Brill for the anti-RPA antibody. This work was supported by The Danish Agency for Science, Technology and Innovation (M.L.), the Villum Kann Rasmussen Foundation (M.L.), the Deutscher Akademischer Austausch Dienst (S.M.G.) and the Lundbeck Foundation (N.E.B.). The Agence Nationale de la Recherche (ANR programme blanc) and the Ligue Nationale Contre le Cancer (LNCC, équipes labelisées) supported V.G. and E.G. laboratories; B.K. is a recipient of a fellowship from the LNNC and P.A. is supported by the Lebanese National council for Scientific Research (CNRSL) and the Association pour la Recherche sur le Cancer (ARC).

Author information




B.K., P.L. and M.N.S. performed the ChIP and telomeric blot analyses. N.E.B., I.G. and M.L. performed the microscopy. B.K., N.E.B., S.M.G., M.T.T. and P.A. constructed strains and assisted with data analysis. M.L. and P.L. performed telomere length PCR. V.G., M.L., E.G. and N.E.B. conceived and designed research, and wrote the manuscript.

Corresponding author

Correspondence to Vincent Géli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1243 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khadaroo, B., Teixeira, M., Luciano, P. et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nat Cell Biol 11, 980–987 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing