Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis

Abstract

Patterning the embryonic dorsoventral axis of both vertebrates and invertebrates requires signalling through bone morphogenetic proteins (BMPs)1. Although a well-studied process, the identity of the physiologically relevant BMP signalling complex in the Drosophila melanogaster embryo is controversial2,3, is generally inferred from cell culture studies and has not been investigated in vertebrates. Here, we demonstrate that dorsoventral patterning in zebrafish, Danio rerio, requires two classes of non-redundant type I BMP receptors, Alk3/6 and Alk8 (activin-like kinases 3/6 and 8). We show, under physiological conditions in the embryo, that these two type I receptor classes form a complex in a manner that depends on Bmp2 and Bmp7. We found that both Bmp2–7 heterodimers, as well as Bmp2 and Bmp7 homodimers, form in the embryo. However, only recombinant ligand heterodimers can activate BMP signalling in the early embryo, whereas a combination of Bmp2 and Bmp7 homodimers cannot. We propose that only heterodimers, signalling through two distinct classes of type I receptor, possess sufficient receptor affinity in an environment of extracellular antagonists to elicit the signalling response required for dorsoventral patterning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Knockdown of alk3a/b with alk6a/b causes increasingly severe dorsalization and loss of P-Smad1/5.
Figure 2: Alk3/6 and Alk8 function non-redundantly and independently.
Figure 3: Homodimers and heterodimers are present in the zebrafish embryo.
Figure 4: Bmp2–Bmp7 heterodimers pattern the zebrafish embryo.
Figure 5: Alk3a and Alk8 associate in a complex only when Bmp2b and Bmp7 are present.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Little, S. C. & Mullins, M. C. Extracellular modulation of BMP activity in patterning the dorsoventral axis. Birth Defects Res. C Embryo Today 78, 224–242 (2006).

    Article  CAS  Google Scholar 

  2. Shimmi, O., Umulis, D., Othmer, H. & O'Connor, M. B. Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell 120, 873–886 (2005).

    Article  CAS  Google Scholar 

  3. Wang, Y. C. & Ferguson, E. L. Spatial bistability of Dpp-receptor interactions during Drosophila dorsal-ventral patterning. Nature 434, 229–234 (2005).

    Article  CAS  Google Scholar 

  4. Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  Google Scholar 

  5. O'Connor, M. B., Umulis, D., Othmer, H. G. & Blair, S. S. Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development 133, 183–193 (2006).

    Article  CAS  Google Scholar 

  6. Kishigami, S. & Mishina, Y. BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev. 16, 265–278 (2005).

    Article  CAS  Google Scholar 

  7. Schmid, B. et al. Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 127, 957–967 (2000).

    CAS  PubMed  Google Scholar 

  8. Yelick, P. C., Abduljabbar, T. S. & Stashenko, P. zALK-8, a novel type I serine/threonine kinase receptor, is expressed throughout early zebrafish development. Dev. Dyn. 211, 352–361 (1998).

    Article  CAS  Google Scholar 

  9. Nikaido, M., Tada, M., Takeda, H., Kuroiwa, A. & Ueno, N. In vivo analysis using variants of zebrafish BMPR-IA: range of action and involvement of BMP in ectoderm patterning. Development 126, 181–190 (1999).

    CAS  PubMed  Google Scholar 

  10. Nikaido, M., Tada, M. & Ueno, N. Restricted expression of the receptor serine/threonine kinase BMPR-IB in zebrafish. Mech. Dev. 82, 219–222 (1999).

    Article  CAS  Google Scholar 

  11. Woods, I. G. et al. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res. 15, 1307–1314 (2005).

    Article  CAS  Google Scholar 

  12. Bauer, H., Lele, Z., Rauch, G. J., Geisler, R. & Hammerschmidt, M. The type I serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. Development 128, 849–858 (2001).

    CAS  PubMed  Google Scholar 

  13. Mintzer, K. A. et al. Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 128, 859–869 (2001).

    CAS  PubMed  Google Scholar 

  14. Mullins, M. C. et al. Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123, 81–93 (1996).

    CAS  PubMed  Google Scholar 

  15. Imai, Y. & Talbot, W. S. Morpholino phenocopies of the bmp2b/swirl and bmp7/snailhouse mutations. Genesis 30, 160–163 (2001).

    Article  CAS  Google Scholar 

  16. Sampath, T. K. et al. Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-β superfamily. J. Biol. Chem. 265, 13198–13205 (1990).

    CAS  PubMed  Google Scholar 

  17. Cui, Y., Jean, F., Thomas, G. & Christian, J. L. BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. EMBO J. 17, 4735–4743 (1998).

    Article  CAS  Google Scholar 

  18. Tucker, J. A., Mintzer, K. A. & Mullins, M. C. The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev. Cell 14, 108–119 (2008).

    Article  CAS  Google Scholar 

  19. Yeo, C. & Whitman, M. Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol. Cell 7, 949–957 (2001).

    Article  CAS  Google Scholar 

  20. Gilboa, L., Wells, R. G., Lodish, H. F. & Henis, Y. I. Oligomeric structure of type I and type II transforming growth factor β receptors: homodimers form in the ER and persist at the plasma membrane. J. Cell Biol. 140, 767–777 (1998).

    Article  CAS  Google Scholar 

  21. Gilboa, L. et al. Bone morphogenetic protein receptor complexes on the surface of live cells: a new oligomerization mode for serine/threonine kinase receptors. Mol. Biol. Cell 11, 1023–1035 (2000).

    Article  CAS  Google Scholar 

  22. Graff, J. M., Thies, R. S., Song, J. J., Celeste, A. J. & Melton, D. A. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79, 169–179 (1994).

    Article  CAS  Google Scholar 

  23. Koenig, B. B. et al. Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Mol. Cell. Biol. 14, 5961–5974 (1994).

    Article  CAS  Google Scholar 

  24. Kirsch, T., Nickel, J. & Sebald, W. BMP-2 antagonists emerge from alterations in the low-affinity binding epitope for receptor BMPR-II. EMBO J. 19, 3314–3324 (2000).

    Article  CAS  Google Scholar 

  25. Macias-Silva, M., Hoodless, P. A., Tang, S. J., Buchwald, M. & Wrana, J. L. Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J. Biol. Chem. 273, 25628–25636 (1998).

    Article  CAS  Google Scholar 

  26. Greenwald, J. et al. The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol. Cell 11, 605–617 (2003).

    Article  CAS  Google Scholar 

  27. Scheufler, C., Sebald, W. & Hulsmeyer, M. Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J. Mol. Biol. 287, 103–115 (1999).

    Article  CAS  Google Scholar 

  28. Weber, D. et al. A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor. BMC Struct. Biol. 7, 6 (2007).

    Article  Google Scholar 

  29. Aono, A. et al. Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer. Biochem. Biophys. Res. Commun. 210, 670–677 (1995).

    Article  CAS  Google Scholar 

  30. Suzuki, A., Kaneko, E., Ueno, N. & Hemmati-Brivanlou, A. Regulation of epidermal induction by BMP2 and BMP7 signaling. Dev. Biol. 189, 112–122 (1997).

    Article  Google Scholar 

  31. Nishimatsu, S. & Thomsen, G. H. Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus embryos. Mech. Dev. 74, 75–88 (1998).

    Article  CAS  Google Scholar 

  32. Khokha, M. K., Yeh, J., Grammer, T. C. & Harland, R. M. Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures. Dev. Cell 8, 401–411 (2005).

    Article  CAS  Google Scholar 

  33. Dal-Pra, S., Furthauer, M., Van-Celst, J., Thisse, B. & Thisse, C. Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. Dev Biol. 298, 514–526 (2006).

    Article  CAS  Google Scholar 

  34. Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598 (1996).

    Article  CAS  Google Scholar 

  35. Zimmerman, L. B., De Jesus-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    Article  CAS  Google Scholar 

  36. Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710 (1999).

    Article  CAS  Google Scholar 

  37. Piccolo, S. et al. Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91, 407–416 (1997).

    Article  CAS  Google Scholar 

  38. De Robertis, E. M. Spemann's organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol. 7, 296–302 (2006).

    Article  CAS  Google Scholar 

  39. Nguyen, V. H. et al. Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Development 127, 1209–1220 (2000).

    CAS  PubMed  Google Scholar 

  40. Nguyen, V. H. et al. Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev Biol. 199, 93–110 (1998).

    Article  CAS  Google Scholar 

  41. Padgett, K. A. & Sorge, J. A. Creating seamless junctions independent of restriction sites in PCR cloning. Gene 168, 31–35 (1996).

    Article  CAS  Google Scholar 

  42. Robu, M. E. et al. p53 activation by knockdown technologies. PLoS Genet. 3, e78 (2007).

    Article  Google Scholar 

  43. Little, S. C. & Mullins, M. C. Twisted gastrulation promotes BMP signaling in zebrafish dorsal-ventral axial patterning. Development 131, 5825–5835 (2004).

    Article  CAS  Google Scholar 

  44. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nat Genet. 26, 216–20 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Whitman for the Alk4(KR)HA construct; L. Jing and M. Granato for Myc-tagged Unplugged/MuSK; B. Holloway and J. Tucker for technical advice; S. Lu for technical support; J. Xie and the UPenn zebrafish core facility for wild-type embryos and S. DiNardo, T. Gupta, F. Marlow and L. Kapp for comments on the manuscript. This work was funded by NIH grants to M.C.M. (GM56326) and to S.C.L. (5 T32 GM07229-28 and 2 T32 HD007516-05).

Author information

Authors and Affiliations

Authors

Contributions

S.C.L. performed the experiments. S.C.L. and M.C.M. designed the experiments, analysed the data, and wrote the manuscript.

Corresponding author

Correspondence to Mary C. Mullins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, S., Mullins, M. Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol 11, 637–643 (2009). https://doi.org/10.1038/ncb1870

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing