Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss of nucleoplasmic LAP2α–lamin A complexes causes erythroid and epidermal progenitor hyperproliferation

Abstract

Lamina-associated polypeptide (LAP) 2α is a chromatin-associated protein that binds A-type lamins1,2. Mutations in both LAP2α and A-type lamins are linked to human diseases called laminopathies3, but the molecular mechanisms are poorly understood. The A-type lamin–LAP2α complex interacts with and regulates retinoblastoma protein (pRb)4,5, but the significance of this interaction in vivo is unknown. Here we address the function of the A-type lamin–LAP2α complex with the use of LAP2α-deficient mice. We show that LAP2α loss causes relocalization of nucleoplasmic A-type lamins to the nuclear envelope and impairs pRb function. This causes inefficient cell-cycle arrest in dense fibroblast cultures and hyperproliferation of epidermal and erythroid progenitor cells in vivo, leading to tissue hyperplasia. Our results support a disease-relevant model6 in which LAP2α defines A-type lamin localization in the nucleoplasm, which in turn affects pRb-mediated regulation of progenitor cell proliferation and differentiation in highly regenerative tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lap2α−/− fibroblasts have reduced nucleoplasmic lamin A/C levels.
Figure 2: Loss of LAP2α in fibroblasts impairs cell-cycle arrest.
Figure 3: LAP2α-deficient paw epidermis contains a higher number of proliferating progenitor cells causing epidermal hyperplasia.
Figure 4: Loss of nucleoplasmic lamins A and C is linked to epidermal hyperproliferation.
Figure 5: Absence of LAP2α leads to elevated levels of erythroid progenitors.

Similar content being viewed by others

References

  1. Dechat, T. et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22, 832–853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schirmer, E. C. & Foisner, R. Proteins that associate with lamins: many faces, many functions. Exp. Cell Res. 313, 2167–2179 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Capell, B. C. & Collins, F. S. Human laminopathies: nuclei gone genetically awry. Nature Rev. Genet. 7, 940–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Dorner, D. et al. Lamina-associated polypeptide 2α regulates cell cycle progression and differentiation via the retinoblastoma–E2F pathway. J. Cell Biol. 173, 83–93 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pekovic, V. et al. Nucleoplasmic LAP2α–lamin A complexes are required to maintain a proliferative state in human fibroblasts. J. Cell Biol. 176, 163–172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gotzmann, J. & Foisner, R. A-type lamin complexes and regenerative potential: a step towards understanding laminopathic diseases? Histochem. Cell Biol. 125, 33–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Berger, R. et al. The characterization and localization of the mouse thymopoietin/lamina-associated polypeptide 2 gene and its alternatively spliced products. Genome Res. 6, 361–370 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Dechat, T. et al. Lamina-associated polypeptide 2α binds intranuclear A-type lamins. J. Cell Sci. 19, 3473–3484 (2000).

    Google Scholar 

  9. Taylor, M. R. et al. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum. Mutat. 26, 566–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sage, J. et al. Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes Dev. 14, 3037–3050 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sankaran, V. G., Orkin, S. H. & Walkley, C. R. Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev. 22, 463–475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spike, B. T. et al. The Rb tumor suppressor is required for stress erythropoiesis. EMBO J. 23, 4319–4329 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Socolovsky, M. et al. Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood 98, 3261–3273 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Iavarone, A. et al. Retinoblastoma promotes definitive erythropoiesis by repressing Id2 in fetal liver macrophages. Nature 432, 1040–1045 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Moir, R. D., Yoon, M., Khuon, S. & Goldman, R. D. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151, 1155–1168 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Markiewicz, E., Ledran, M. & Hutchison, C. J. Remodelling of the nuclear lamina and nucleoskeleton is required for skeletal muscle differentiation in vitro. J. Cell Sci. 118, 409–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Walkley, C. R. & Orkin, S. H. Rb is dispensable for self-renewal and multilineage differentiation of adult hematopoietic stem cells. Proc. Natl Acad. Sci. USA 103, 9057–9062 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Ruiz, S. et al. Unique and overlapping functions of pRb and p107 in the control of proliferation and differentiation in epidermis. Development 131, 2737–2748 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Haigis, K., Sage, J., Glickman, J., Shafer, S. & Jacks, T. The related retinoblastoma (pRb) and p130 proteins cooperate to regulate homeostasis in the intestinal epithelium. J. Biol. Chem. 281, 638–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448–452 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Constantinescu, D., Gray, H. L., Sammak, P. J., Schatten, G. P. & Csoka, A. B. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24, 177–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J. & Discher, D. E. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA 104, 15619–15624 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Espada, J. et al. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J. Cell Biol. 181, 27–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sagelius, H. et al. Targeted transgenic expression of the mutation causing Hutchinson–Gilford progeria syndrome leads to proliferative and degenerative epidermal disease. J. Cell. Sci. 121, 969–978 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Scaffidi, P. & Misteli, T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nature Cell Biol. 10, 452–459 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Andra, K., Nikolic, B., Stocher, M., Drenckhahn, D. & Wiche, G. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev. 12, 3442–3451 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vlcek, S., Just, H., Dechat, T. & Foisner, R. Functional diversity of LAP2α and LAP2β in postmitotic chromosome association is caused by an α-specific nuclear targeting domain. EMBO J. 18, 6370–6384 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dechat, T. et al. Detergent-salt resistance of LAP2α in interphase nuclei and phosphorylation-dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J. 17, 4887–4902 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vlcek, S., Korbei, B. & Foisner, R. Distinct functions of the unique C terminus of LAP2α in cell proliferation and nuclear assembly. J. Biol. Chem. 277, 18898–18907 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Loewinger, L. & McKeon, F. Mutations in the nuclear lamin proteins resulting in their aberrant assembly in the cytoplasm. EMBO J. 7, 2301–2309 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Müller for the Cre-deleter mouse strain, Larry Gerace for the genomic BAC clone, T. Jacks for triple knockout mouse embryonic fibroblasts, P. Luvalle for providing paws from lamin A/C-deficient mice, K. Biadasiewicz for expert technical assistance, and H. Beug and E. W. Müllner for helpful discussions. This study was supported by grants from the Austrian Science Research Fund (FWF P17871) and the EURO-Laminopathies research project of the European Commission (contract LSHM-CT-2005-018690) to R.F. and a postdoctoral fellowship from L'Oreal/UNESCO/ÖADW/BMWF to N.N.

Author information

Authors and Affiliations

Authors

Contributions

N.N., B.K., P.F., C.L.S. and R.F. planned the project; N.N., B.K., S.K., M.A.K., D.D., R.K., I.G. and T.C. performed the experiments; N.N., B.K., M.A.K., D.D., R.B. and R.F. analysed the data; N.N., B.K., C.L.S. and R.F. wrote the manuscript.

Corresponding author

Correspondence to Roland Foisner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1068 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naetar, N., Korbei, B., Kozlov, S. et al. Loss of nucleoplasmic LAP2α–lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol 10, 1341–1348 (2008). https://doi.org/10.1038/ncb1793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing