Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle

Abstract

It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. However, little is known about STIM1 in excitable cells, such as striated muscle, where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to show SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide insight into the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Muscle differentiation is associated with increased expression of STIM1 and redistribution of STIM1.
Figure 2: Gene trap strategy for STIM1.
Figure 3: Store depletion fails to activate SOC current in primary myotubes lacking functional STIM1.
Figure 4: STIM1 Localization.
Figure 5: Mice without functional STIM1 show a neonatal skeletal myopathy.
Figure 6: Muscle gene expression and functional analysis of STIM1-mutant mice.
Figure 7: STIM1-mediated store refilling is required for fatigue resistance in skeletal myotubes.

Similar content being viewed by others

References

  1. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  Google Scholar 

  2. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    Article  CAS  Google Scholar 

  3. Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    Article  CAS  Google Scholar 

  4. Luik, R. M., Wu, M. M., Buchanan, J. & Lewis, R. S. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174, 815–825 (2006).

    Article  CAS  Google Scholar 

  5. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    Article  CAS  Google Scholar 

  6. Liou, J., Fivaz, M., Inoue, T. & Meyer, T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl Acad. Sci. USA 104, 9301–9306 (2007).

    Article  CAS  Google Scholar 

  7. Wu, M. M., Luik, R. M. & Lewis, R. S. Some assembly required: constructing the elementary units of store-operated Ca2+ entry. Cell Calcium 42, 163–172 (2007).

    Article  CAS  Google Scholar 

  8. Parekh, A. B. & Putney, Jr, J. W. Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

    Article  CAS  Google Scholar 

  9. Vig, M. et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16, 2073–2079 (2006).

    Article  CAS  Google Scholar 

  10. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  Google Scholar 

  11. Mignen, O., Thompson, J. L. & Shuttleworth, T. J. STIM1 regulates Ca2+ entry via arachidonate-regulated Ca2+-selective (ARC) channels without store depletion or translocation to the plasma membrane. J. Physiol. 579, 703–715 (2007).

    Article  CAS  Google Scholar 

  12. Yuan, J. P., Zeng, W., Huang, G. N., Worley, P. F. & Muallem, S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nature Cell Biol. 9, 636–645 (2007).

    Article  CAS  Google Scholar 

  13. Parvez, S. et al. STIM2 protein mediates distinct store-dependent and store-independent modes of CRAC channel activation. FASEB J. 22, 752–761 (2007).

    Article  Google Scholar 

  14. Ong, H. L. et al. Dynamic assembly of TRPC1–STIM1–Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J. Biol. Chem. 282, 9105–9116 (2007).

    Article  CAS  Google Scholar 

  15. Huang, G. N. et al. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nature Cell Biol. 8, 1003–1010 (2006).

    Article  CAS  Google Scholar 

  16. Hamilton, S. L. Ryanodine receptors. Cell Calcium 38, 253–260 (2005).

    Article  CAS  Google Scholar 

  17. MacLennan, D. H. Ca2+ signaling and muscle disease. Eur. J. Biochem. 267, 5291–5297 (2000).

    Article  CAS  Google Scholar 

  18. Kurebayashi, N. & Ogawa, Y. Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J. Physiol. 533, 185–199 (2001).

    Article  CAS  Google Scholar 

  19. Rosenberg, P. et al. TRPC3 channels confer cellular memory of recent neuromuscular activity. Proc. Natl Acad. Sci. USA 101, 9387–9392 (2004).

    Article  CAS  Google Scholar 

  20. Pan, Z. et al. Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nature Cell Biol. 4, 379–383 (2002).

    Article  CAS  Google Scholar 

  21. Stiber, J. A. et al. Homer modulates NFAT-dependent signaling during muscle differentiation. Dev. Biol. 287, 213–224 (2005).

    Article  CAS  Google Scholar 

  22. Chin, E. R. et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499–2509. (1998).

    Article  CAS  Google Scholar 

  23. Williams, R. S. & Rosenberg, P. Calcium-dependent gene regulation in myocyte hypertrophy and remodeling. Cold Spring Harb. Symp. Quant. Biol. 67, 339–344 (2002).

    Article  CAS  Google Scholar 

  24. Luik, R. M. & Lewis, R. S. New insights into the molecular mechanisms of store-operated Ca2+ signaling in T cells. Trends Mol. Med. 13, 103–107 (2007).

    Article  CAS  Google Scholar 

  25. Horsley, V., Jansen, K. M., Mills, S. T. & Pavlath, G. K. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483–494 (2003).

    Article  CAS  Google Scholar 

  26. Kegley, K. M., Gephart, J., Warren, G. L. & Pavlath, G. K. Altered primary myogenesis in NFATC3−/− mice leads to decreased muscle size in the adult. Dev. Biol. 232, 115–126. (2001).

    Article  CAS  Google Scholar 

  27. Friday, B. B., Horsley, V. & Pavlath, G. K. Calcineurin activity is required for the initiation of skeletal muscle differentiation. J. Cell Biol. 149, 657–666. (2000).

    Article  CAS  Google Scholar 

  28. Dziadek, M. A. & Johnstone, L. S. Biochemical properties and cellular localisation of STIM proteins. Cell Calcium 42, 123–132 (2007).

    Article  CAS  Google Scholar 

  29. Yeromin, A. V., Roos, J., Stauderman, K. A. & Cahalan, M. D. A store-operated calcium channel in Drosophila S2 cells. J. Gen. Physiol. 123, 167–182 (2004).

    Article  CAS  Google Scholar 

  30. Prakriya, M. & Lewis, R. S. Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J. Gen. Physiol. 119, 487–507 (2002).

    Article  CAS  Google Scholar 

  31. Mercer, J. C. et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 281, 24979–24990 (2006).

    Article  CAS  Google Scholar 

  32. Prakriya, M. & Lewis, R. S. CRAC channels: activation, permeation, and the search for a molecular identity. Cell Calcium 33, 311–321 (2003).

    Article  CAS  Google Scholar 

  33. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    Article  CAS  Google Scholar 

  34. Smyth, J. T. et al. Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim. Biophys. Acta 1763, 1147–1160 (2006).

    Article  CAS  Google Scholar 

  35. Launikonis, B. S. & Rios, E. Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. J. Physiol. 583, 81–97 (2007).

    Article  CAS  Google Scholar 

  36. Eu, J. P. et al. Concerted regulation of skeletal muscle contractility by oxygen tension and endogenous nitric oxide. Proc. Natl Acad. Sci. USA 100, 15229–15234 (2003).

    Article  CAS  Google Scholar 

  37. Maclennan, D. H. Interactions of the calcium ATPase with phospholamban and sarcolipin: structure, physiology and pathophysiology. .J. Musc. Res. Cell Motil. 25, 600–601 (2004).

    Google Scholar 

  38. Lorenzon, P., Giovannelli, A., Ragozzino, D., Eusebi, F. & Ruzzier, F. Spontaneous and repetitive calcium transients in C2C12 mouse myotubes during in vitro myogenesis. Eur. J. Neurosci. 9, 800–808 (1997).

    Article  CAS  Google Scholar 

  39. Lorenzon, P., Grohovaz, F. & Ruzzier, F. Voltage- and ligand-gated ryanodine receptors are functionally separated in developing C2C12 mouse myotubes. J. Physiol. 525, 499–507. (2000).

    Article  CAS  Google Scholar 

  40. Chun, L. G., Ward, C. W. & Schneider, M. F. Ca2+ sparks are initiated by Ca2+ entry in embryonic mouse skeletal muscle and decrease in frequency postnatally. Am. J. Physiol. 285, C686–C697 (2003).

    Article  CAS  Google Scholar 

  41. Konig, S., Beguet, A., Bader, C. R. & Bernheim, L. The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion. Development 133, 3107–3114 (2006).

    Article  CAS  Google Scholar 

  42. Philipp, S. et al. TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J. Biol. Chem. 278, 26629–26638 (2003).

    Article  CAS  Google Scholar 

  43. Lopez, J. J., Salido, G. M., Pariente, J. A. & Rosado, J. A. Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J. Biol. Chem. 281, 28254–28264 (2006).

    Article  CAS  Google Scholar 

  44. Mallouk, N., Jacquemond, V. & Allard, B. Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc. Natl Acad. Sci. USA 97, 4950–4955 (2000).

    Article  CAS  Google Scholar 

  45. Whitehead, N. P., Streamer, M., Lusambili, L. I., Sachs, F. & Allen, D. G. Streptomycin reduces stretch-induced membrane permeability in muscles from mdx mice. Neuromuscul. Disord. 16, 845–854 (2006).

    Article  Google Scholar 

  46. Suchyna, T. M. & Sachs, F. Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes. J. Physiol. 581, 369–387 (2007).

    Article  CAS  Google Scholar 

  47. Lorin-Nebel, C., Xing, J., Yan, X. & Strange, K. CRAC channel activity in Caenorhabditis elegans is mediated by Orai1 and STIM1 homologues and is essential for ovulation and fertility. J. Physiol. 580, 67–85 (2007).

    Article  CAS  Google Scholar 

  48. Yan, X. et al. Function of a STIM1 homologue in Caenorhabditis elegans: evidence that store-operated Ca2+ entry is not essential for oscillatory Ca2+ signaling and ER Ca2+ homeostasis. J. Gen. Physiol. 128, 443–459 (2006).

    Article  CAS  Google Scholar 

  49. Vig, M. et al. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nature Immunol. 9, 89–96 (2008).

    Article  CAS  Google Scholar 

  50. Mohler, P. J., Gramolini, A. O. & Bennett, V. The ankyrin-B C-terminal domain determines activity of ankyrin-B/G chimeras in rescue of abnormal inositol 1,4,5-trisphosphate and ryanodine receptor distribution in ankyrin-B−/− neonatal cardiomyocytes. J. Biol. Chem. 277, 10599–10607 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to Mary Hutson for her guidance on whole-mount in situ hybridization and imaging techniques and to Margaret Kirby's lab for providing imaging equipment. We thank Gerhard Meissner and Qui-An Sun for their help with microsomal preparations. This research was carried out at the Sarah W. Stedman Nutrition and Metabolism Center at Duke University and supported by the following grants: an HHMI Physician-Scientist Early Career Award and NIH award (K08-HL077520) to J.A.S., NIH award (K08-HL-071841-04), Mandel Foundation award and MDA research award to P.B.R., and an HHMI Training Fellowship for Medical Students to S.W.

Author information

Authors and Affiliations

Authors

Contributions

J.S. carried out the confocal imaging and contributed to the calcium imaging experiments; A.F. and S.W. generated the Stim1 gene trap mice and isolated primary and cultured myotubes; Z.S.Z. designed and executed all patch-clamp experiments; V.G. prepared all samples for electron microscopy and confocal imaging; J.B. and E.F. performed all calcium imaging experiments and analysed the data; M.S. generated silencing adenoviruses; N.M. interpreted the electron microscopy studies; J.E. performed force-frequency experiments; R.S.W. contributed to the writing of the manuscript; P.R. planned the experiments, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Paul Rosenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5 (PDF 517 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiber, J., Hawkins, A., Zhang, ZS. et al. STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10, 688–697 (2008). https://doi.org/10.1038/ncb1731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing