Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TBL1–TBLR1 and β-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis

Abstract

Aberrant Wnt signalling promotes oncogenesis by increasing the nuclear accumulation of β-catenin to activate downstream target genes. However, the mechanism of β-catenin recruitment to the Wnt target-gene promoter, a critical step for removing the co-repressor complex, is largely unknown. Here, we report that transducin β-like protein 1 (TBL1) and its highly related family member TBLR1 were required for Wnt–β-catenin-mediated transcription. Wnt signalling induced the interaction between β-catenin and TBL1–TBLR1, as well as their binding to Wnt target genes. Importantly, the recruitment of TBL1–TBLR1 and β-catenin to Wnt target-gene promoters was mutually dependent on each other. Furthermore, the depletion of TBL1–TBLR1 significantly inhibited Wnt–β-catenin-induced gene expression and oncogenic growth in vitro and in vivo. Our results unravel two new components required for nuclear β-catenin function, and have important implications in developing new strategies for inhibiting Wnt–β-catenin-mediated tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Both TBL1 and TBLR1 are required for β-catenin–Tcf-mediated transcription.
Figure 2: Wnt signalling stimulates the interaction between β-catenin and TBL1–TBLR1.
Figure 3: TBL1–TBLR1 constitutively occupied on the Wnt target-gene promoter in colorectal cancer cell lines.
Figure 4: Both TBL1 and TBLR1 are required for the recruitment of β-catenin to the Wnt target-gene promoter.
Figure 5: TBL1–TBLR1 and β-catenin co-occupied the Wnt target-gene promoter.
Figure 6: TBL1 and TBLR1 play a critical role in β-catenin-mediated oncogenesis.
Figure 7: Schematic representation of a model for the role of TBL1–TBLR1 in the recruitment of β-catenin to the Wnt target-gene promoter.

Similar content being viewed by others

References

  1. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signalling. Cell 103, 311–320 (2000).

    Article  CAS  Google Scholar 

  2. Willert, K. & Jones, K. A. Wnt signalling is the party in the nucleus? Genes Dev. 20, 1394–1404 (2006).

    Article  CAS  Google Scholar 

  3. Nelson, W. J. & Nusse, R. Convergence of Wnt, β-Catenin and cadherin pathways. Science 303, 1483–1487 (2004).

    Article  CAS  Google Scholar 

  4. Moon, R. T., Kohn, A. D., De Ferrari, G. V. & Kaykas, A. WNT and β-catenin signalling: diseases and therapies. Nature Rev. Genet. 5, 691–701 (2004).

    Article  CAS  Google Scholar 

  5. Morin, P. J. et al. Activation of β-catenin–Tcf signalling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  Google Scholar 

  6. Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

    Article  CAS  Google Scholar 

  7. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  Google Scholar 

  8. He, T. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  Google Scholar 

  9. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    Article  CAS  Google Scholar 

  10. Daniels, D. L. & Weis W. I. β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nature Cell Biol. 12, 364–371 (2005).

    CAS  Google Scholar 

  11. Billin, A. N. Thirlwell, H. & Ayer, D. E. β-catenin–histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressors to an activator. Mol. Cell. Biol. 20, 6882–6890 (2000).

    Article  CAS  Google Scholar 

  12. Graham, T. A., Weaver, C., Mao, F., Kimelman, D. & Xu, W. Crystal structure of a β-catenin/Tcf complex. Cell 103, 885–896 (2000).

    Article  CAS  Google Scholar 

  13. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2004).

    Article  Google Scholar 

  14. He, X., Semenov, M., Tamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signalling: arrows point the way. Development 131, 1663–1677 (2004).

    Article  CAS  Google Scholar 

  15. Sierra, J., Yoshida, T., Joazeiro, C. & Jones, K. A. The APC tumor suppressor counteracts β-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev. 20, 586–600 (2006).

    Article  CAS  Google Scholar 

  16. Mosimann, C., Hausmann, G. & Basler, K. Parafibromin/hyrax Activates Wnt/Wg target gene transcription by direct association with β-catenin/armadillo. Cell 125, 327–341 (2006).

    Article  CAS  Google Scholar 

  17. Kramps, T. et al. Wnt/Wingless signalling requires BCL9/Legless-mediated recruitment of pygopus to the nuclear β-catenin–TCF complex. Cell 109, 47–60 (2002).

    Article  CAS  Google Scholar 

  18. Matsuzawa, S. I. & Reed, J. C. Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol. Cell 7, 915–926 (2001).

    Article  CAS  Google Scholar 

  19. Rosenfeld, M. G., Lunyak, V. V. & Glass, C. K. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428 (2006).

    Article  CAS  Google Scholar 

  20. Barker, N. et al. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J. 20, 4935–4943 (2001).

    Article  CAS  Google Scholar 

  21. Tsuda, L., Nagaraj, R., Zipursky, S. L. & Banerjee, U. An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su(H)/SMRTER repression during inductive notch signalling. Cell 110, 625–637 (2002).

    Article  CAS  Google Scholar 

  22. Yoon, H. G. et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J. 22, 1336–1346 (2003).

    Article  CAS  Google Scholar 

  23. Yoon, H. G., Choi, Y., Cole, P. A. & Wong, J. Reading and function of a histone code involved in targeting corepressor complexes for repression. Mol. Cell. Biol. 25, 324–335 (2005).

    Article  CAS  Google Scholar 

  24. Perissi, V., Aggarwal, A., Glass, C. K., Rose, D. W. & Rosenfeld, M. G. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116, 511–526 (2004).

    Article  CAS  Google Scholar 

  25. Mao, J. Low-density lipoprotein receptor-related protein-5 binds to axin and regulates the canonical Wnt signalling pathway. Mol. Cell 7, 801–809 (2001).

    Article  CAS  Google Scholar 

  26. Zeng, W. et al. naked cuticle encodes an inducible antagonist of Wnt signalling Nature 403, 789–795 (1998).

    Article  Google Scholar 

  27. Fang, M., Li, J., Blauwkamp, T., Bhambhani, C., Campbell, N. & Cadigan, K. M. C-terminal-binding protein directly activates and represses Wnt transcriptional targets in Drosophila. EMBO J. 25, 2735–2745 (2006).

    Article  CAS  Google Scholar 

  28. Leung, J. Y. et al. Activation of AXIN2 expression by β-catenin-T cell factor. A feedback repressor pathway regulating Wnt signalling. J. Biol. Chem. 277, 21657–21665 (2002).

    Article  CAS  Google Scholar 

  29. Lustig, B. et al. Negative feedback loop of Wnt signalling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell. Biol. 22, 1184–1193 (2002).

    Article  CAS  Google Scholar 

  30. Jho, E. H. et al. Wnt/β-catenin/Tcf signalling induces the transcription of Axin2, a negative regulator of the signalling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  Google Scholar 

  31. Rosin-Arbesfeld, R., Cliffe, A., Brabletz, T. & Bienz, M. Nuclear export of the APC tumour suppressor controls β-catenin function in transcription. EMBO J. 22, 1101–1113 (2003).

    Article  CAS  Google Scholar 

  32. Townsley, F. M., Cliffem A. & Bienz, M. Pygopus and Legless target Armadillo/β-catenin to the nucleus to enable its transcriptional co-activator function. Nature Cell Biol. 6, 626–633 (2004).

    Article  CAS  Google Scholar 

  33. Morin, P. J., Vogelstein, B. & Kinzler, K. W. Apoptosis and APC in colorectal tumorigenesis. Proc. Natl Acad. Sci. USA 93, 7950–7954 (1996).

    Article  CAS  Google Scholar 

  34. Kolligs, F. T. et al. ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with β-catenin defects and promotes neoplastic transformation. Cancer Cell 1, 145–155 (2002).

    Article  CAS  Google Scholar 

  35. Hovanes, K. et al. β-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nature Genet. 28, 53–57 (2001).

    CAS  PubMed  Google Scholar 

  36. You, Z. et al. Wnt signalling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. J. Cell Biol. 157, 429–440 (2002).

    Article  CAS  Google Scholar 

  37. Chen, S. et al. Wnt-1 signalling inhibits apoptosis by activating β-catenin/T cell factor-mediated transcription. J. Cell Biol. 152, 87–96 (2001).

    Article  CAS  Google Scholar 

  38. Yang, F., Zeng, Q., Yu, G., Li, S. & Wang, C. Y. Wnt/β-catenin signalling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC. Cell Signal. 18, 679–687 (2006).

    Article  CAS  Google Scholar 

  39. DasGupta, R., Kaykas, A., Moon, R. T. & Perrimon, N. Functional genomic analysis of the Wnt–wingless signalling pathway. Science 308, 826–833 (2005).

    Article  CAS  Google Scholar 

  40. Zeng, X. et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877 (2005).

    Article  CAS  Google Scholar 

  41. Davidson, G. et al. Casein kinase 1 γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438, 867–872 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Cadigan for suggestions and reagents, and D. Saims and J. Guan for reading the manuscript. This work was supported by National Institutes of Health (NIH) grants to C.Y.W.

Author information

Authors and Affiliations

Authors

Contributions

J.L. performed the experiments. J.L. and C.Y.W. designed the experiments, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Cun-Yu Wang.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, s5 and S6 (PDF 690 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Wang, CY. TBL1–TBLR1 and β-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat Cell Biol 10, 160–169 (2008). https://doi.org/10.1038/ncb1684

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing