Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epithelial coating controls mesenchymal shape change through tissue-positioning effects and reduction of surface-minimizing tension

Abstract

Signalling between mesenchymal and epithelial cells has a profound influence on organ morphogenesis. However, less is known about the mechanical function of epithelial–mesenchymal interactions. Here, we describe two principal effects by which epithelia can regulate shape changes in mesenchymal cell aggregates. We propose that during formation of the embryonic body axis, the epithelial layer relieves surface minimizing tensions that would force cell aggregates into a spherical shape, and controls the serial arrangement of cell populations along the axis. The combined effects permit the tissue to deviate from a spherical form and to elongate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lip explants.
Figure 2: Epithelial coating controls elongation.
Figure 3: Epithelial coating controls tissue positioning.
Figure 4: Cell sorting from mixed cell aggregates.
Figure 5: Activin-induced sorting.

Similar content being viewed by others

References

  1. Schock, F. & Perrimon, N. Molecular mechanisms of epithelial morphogenesis. Ann. Rev. Cell Dev. Biol. 18, 463–493 (2002).

    Article  CAS  Google Scholar 

  2. Steinberg, M. S. in Specificity of Embryological Interactions (ed. Garrod, D. R.) 99–131 (Chapman & Hall, London, 1978).

    Google Scholar 

  3. Beysen, D. A., Forgacs, G. & Glazier, J. A. Cell sorting is analogous to phase ordering in fluids. Proc. Natl Acad. Sci. USA 97, 9467–9471 (2000).

    Article  Google Scholar 

  4. Keller, R. Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298, 1950–1954 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, J. C., Price, B. M., Green, J. B., Weigel, D. & Herrmann, B. G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Keller, R. & Danilchik, M. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis . Development 103, 193–209 (1988).

    Google Scholar 

  7. Shih, J. & Keller, R. Cell motility driving mediolateral intercalation in explants of Xenopus laevis . Development 116, 901–914 (1992).

    CAS  PubMed  Google Scholar 

  8. Davis, G. S., Phillips, H. M. & Steinberg, M. S. Germ-layer surface tensions and “tissue affinities” in Rana pipiens gastrulae: Quantitative measurements. Dev. Biol. 192, 630–644 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. del Rio, O. I. & Neumann, A. W. Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J. Colloid Interface Sci. 196, 136–147 (1997).

    Article  CAS  Google Scholar 

  10. Chalmers A. D. et al. aPKC, Crumbs3 and Lgl2 control apicobasal polarity in early vertebrate development. Development 132, 977–986 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, S. H., Yamamoto, A., Bouwmeester, T., Agius, E. & De Robertis, E. M. The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125, 4681–4690 (1998).

    CAS  PubMed  Google Scholar 

  12. Chen, X. J. & Gumbiner, B. M. Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. J. Cell Biol. 174, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sasai, Y., Lu, B., Piccolo, S. & De Robertis, E. M. Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J. 15, 4547–4555 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sasai, Y. et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994).

    Article  Google Scholar 

  15. Townes, P. L. & Holtfreter, J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1955).

    Article  Google Scholar 

  16. Steinberg, M. S. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401–408 (1963).

    Article  CAS  PubMed  Google Scholar 

  17. Green, J. B., New, H. B. & Smith J. C. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71, 731–739 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Ninomiya, H., Elinson, R. P. & Winklbauer, R. Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning. Nature 430, 364–367 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Gurdon, J. B. & Bourillot, P. Y. Morphogen gradient interpretation. Nature 413, 797–803 (2001).

    Article  Google Scholar 

  20. Schier, A. F. Nodal signaling in vertebrate development. Annu. Rev. Cell Dev. Biol. 19, 589–621 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Schnabel, R. et al. Global cell sorting in the C. elegans embryo defines a new mechanism for pattern formation. Dev. Biol. 294, 418–431 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Steinberg, M. S. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool. 173, 395–434 (1970).

    Article  CAS  PubMed  Google Scholar 

  23. Steinberg, M. S. & Takeichi, M. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl Acad. Sci. USA 91, 206–209 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Foty, R. A., Pfleger, C. M., Forgacs, G. & Steinberg, M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122, 1611–1620 (1996).

    CAS  PubMed  Google Scholar 

  25. Nardi, J. B. & Stocum D. L. Surface properties of regenerating limb cells: evidence for gradation along the proximodistal axis. Differentiation 25, 27–31 (1983).

    Article  Google Scholar 

  26. Koibuchi, N. & Tochinai, S. Existence of gradient in cell adhesiveness along the developing Xenopus hind limb bud, shown by a cellular sorting-out experiment in vitro . Dev. Growth Differ. 40, 355–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Kuroda, H., Sakumoto, H., Kinoshita, K. & Asashima, M. Changes in the adhesive properties of dissociated and reaggregated Xenopus laevis embryo cells. Dev. Growth Differ. 41, 283–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Tepass, U., Godt, D. & Winklbauer, R. Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12, 572–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Harland, R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685–695 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Angres, B., Muller, A. H., Kellermann, J. & Hausen, P. Differential expression of two cadherins in Xenopus laevis . Development 111, 829–844 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank: P. Hausen for 6D5 antibodies; E. M. DeRobertis, N. Papalopulu, Y. Sasai and J. Smith for plasmids; A. W. Neumann and A. Kalantarian for ADSA simulations; and T. Harris, P. Zandstra, E. Aacosta, U. Tepass, D. Godt and V. Tropepe for critical reading of the manuscript. Work was supported by grants from the Canadian Institutes of Health Research (MOP-53075) and the Canada Foundation for Innovation to R.W. and by a postdoctoral fellowship from the Japan Society for the Promotion of Science to H.N.

Author information

Authors and Affiliations

Authors

Contributions

H.N. planned the project and carried out the experiments. H.N. and R.W. analysed the data and wrote the paper.

Corresponding author

Correspondence to Rudolf Winklbauer.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, Movie legends, Supplementary Table S1 and Supplementary Discussion (PDF 783 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1290 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1998 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ninomiya, H., Winklbauer, R. Epithelial coating controls mesenchymal shape change through tissue-positioning effects and reduction of surface-minimizing tension. Nat Cell Biol 10, 61–69 (2008). https://doi.org/10.1038/ncb1669

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1669

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing