Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF

Abstract

FoxG1 is an evolutionarily conserved, winged-helix transcriptional repressor that maintains progenitor cells in the vertebrate forebrain. How the activity of FoxG1 is regulated is not known. Here, we report that in the developing Xenopus and mouse forebrain, FoxG1 is nuclear in progenitor cells but cytoplasmic in differentiating cells. The subcellular localisation of FoxG1 is regulated at the post-translational level by casein kinase I (CKI) and fibroblast growth factor (FGF) signalling. CKI phosphorylation of Ser 19 of FoxG1 promotes nuclear import, whereas FGF-induced phosphorylation of Thr 226 promotes nuclear export. Interestingly, FGF-induced phosphorylation of FoxG1 is mediated Akt kinase (also known as protein B kinase, PKB) kinase, rather than the MAPK pathway. Phosphorylation of endogenous FoxG1 is blocked by CKI and Akt inhibitors. In the mouse olfactory placode cell line OP27, and in cortical progenitors, increased FGF signalling causes FoxG1 to exit the nucleus and promotes neuronal differentiation, whereas FGF and Akt inhibitors block this effect. Thus, CKI and FGF signalling converge on an antagonistic regulation of FoxG1, which in turn controls neurogenesis in the forebrain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of FoxG1 RNA and FoxG1 protein in the developing Xenopus and mouse forebrain.
Figure 2: FoxG1 is phosphorylated by CKIδ at the N-terminus.
Figure 3: FGF signalling induces the nuclear export of FoxG1.
Figure 4: FGF signalling induces the nuclear export of FoxG1 through the PI(3)K–Akt pathway.
Figure 5: Phosphorylation and subcellular localization of endogenous FoxG1.

Similar content being viewed by others

References

  1. Kaestner, K. H., Knochel, W. & Martinez, D. E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14, 142–146 (2000).

    CAS  PubMed  Google Scholar 

  2. Xuan, S. et al. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14, 1141–1152 (1995).

    Article  CAS  Google Scholar 

  3. Bourguignon, C., Li, J. & Papalopulu, N. XBF-1, a winged helix transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm. Development 125, 4889–900 (1998).

    CAS  PubMed  Google Scholar 

  4. Hanashima, C., Li, S. C., Shen, L., Lai, E. & Fishell, G. Foxg1 suppresses early cortical cell fate. Science 303, 56–59 (2004).

    Article  CAS  Google Scholar 

  5. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neurosci. 9, 743–751 (2006).

    Article  CAS  Google Scholar 

  6. Li, J., Thurm, H., Chang, H. W., Iacovoni, J. S. & Vogt, P. K. Oncogenic transformation induced by the Qin protein is correlated with transcriptional repression. Proc. Natl Acad. Sci. USA 94, 10885–10888 (1997).

    Article  CAS  Google Scholar 

  7. Dou, C. et al. BF-1 interferes with transforming growth factor β signaling by associating with Smad partners. Mol. Cell Biol. 20, 6201–6211 (2000).

    Article  CAS  Google Scholar 

  8. Rodriguez, C. et al. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-β signaling. J. Biol. Chem. 276, 30224–30230 (2001).

    Article  CAS  Google Scholar 

  9. Yao, J., Lai, E. & Stifani, S. The winged-helix protein brain factor 1 interacts with groucho and hes proteins to repress transcription. Mol. Cell Biol. 21, 1962–1972 (2001).

    Article  CAS  Google Scholar 

  10. Hanashima, C., Shen, L., Li, S. C. & Lai, E. Brain factor-1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms. J. Neurosci. 22, 6526–6536 (2002).

    Article  CAS  Google Scholar 

  11. Seoane, J., Le, H. V., Shen, L., Anderson, S. A. & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211–223 (2004).

    Article  CAS  Google Scholar 

  12. Hardcastle, Z. & Papalopulu, N. Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate. Development 127, 1303–1314 (2000).

    CAS  PubMed  Google Scholar 

  13. Papalopulu, N. & Kintner, C. A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development 122, 3409–3418 (1996).

    CAS  PubMed  Google Scholar 

  14. Campbell, K. Cortical neuron specification: it has its time and place. Neuron 46, 373–376 (2005).

    Article  CAS  Google Scholar 

  15. Sonderegger, C. K. & Vogt, P. K. Binding of the corepressor TLE1 to Qin enhances Qin-mediated transformation of chicken embryo fibroblasts. Oncogene 22, 1749–1757 (2003).

    Article  CAS  Google Scholar 

  16. Marcal, N. et al. Antagonistic effects of Grg6 and Groucho/TLE on the transcription repression activity of brain factor 1/FoxG1 and cortical neuron differentiation. Mol. Cell Biol. 25, 10916–10929 (2005).

    Article  CAS  Google Scholar 

  17. Flotow, H. & Roach, P. J. Role of acidic residues as substrate determinants for casein kinase I. J. Biol. Chem. 266, 3724–3727 (1991).

    CAS  PubMed  Google Scholar 

  18. Gross, S. D. & Anderson, R. A. Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal. 10, 699–711 (1998).

    Article  CAS  Google Scholar 

  19. Voigt, J., Chen, J. A., Gilchrist, M., Amaya, E. & Papalopulu, N. Expression cloning screening of a unique and full-length set of cDNA clones is an efficient method to identify gene function in Xenopus neurogenesis. Mech. Dev. 122, 307–311 (2005).

    Article  Google Scholar 

  20. Rena, G., Bain, J., Elliott, M. & Cohen, P. D4476, a cell-permeant inhibitor of CKI, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep 5, 60–65 (2004).

    Article  CAS  Google Scholar 

  21. Zheng, W., Nowakowski, R. S. & Vaccarino, F. M. Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev. Neurosci. 26, 181–196 (2004).

    Article  CAS  Google Scholar 

  22. Raballo, R. et al. Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J. Neurosci. 20, 5012–5023 (2000).

    Article  CAS  Google Scholar 

  23. Dono, R., Texido, G., Dussel, R., Ehmke, H. & Zeller, R. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J. 17, 4213–4225 (1998).

    Article  CAS  Google Scholar 

  24. Temple, S. & Qian, X. bFGF, neurotrophins, and the control or cortical neurogenesis. Neuron 15, 249–252 (1995).

    Article  CAS  Google Scholar 

  25. Vaccarino, F. M., Ganat, Y., Zhang, Y. & Zheng, W. Stem cells in neurodevelopment and plasticity. Neuropsychopharmacology 25, 805–815 (2001).

    Article  CAS  Google Scholar 

  26. Nutt, S. L., Dingwell, K. S., Holt, C. E. & Amaya, E. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes Dev. 15, 1152–1166 (2001).

    Article  CAS  Google Scholar 

  27. Alessi, D. R., Caudwell, F. B., Andjelkovic, M., Hemmings, B. A. & Cohen, P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett 399, 333–338 (1996).

    Article  CAS  Google Scholar 

  28. Davis, R. J. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268, 14553–14556 (1993).

    CAS  PubMed  Google Scholar 

  29. Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149 (2005).

    Article  CAS  Google Scholar 

  30. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  31. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  Google Scholar 

  32. Woods, Y. L. & Rena, G. Effect of multiple phosphorylation events on the transcription factors FKHR, FKHRL1 and AFX. Biochem. Soc. Trans. 30, 391–397 (2002).

    Article  CAS  Google Scholar 

  33. Burgering, B. M. & Medema, R. H. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J. Leukoc. Biol. 73, 689–701 (2003).

    Article  CAS  Google Scholar 

  34. Illing, N. et al. Conditionally immortalized clonal cell lines from the mouse olfactory placode differentiate into olfactory receptor neurons. Mol. Cell Neurosci. 20, 225–243 (2002).

    Article  CAS  Google Scholar 

  35. Zhang, C. et al. Repression of nodal expression by maternal B1-type SOXs regulates germ layer formation in Xenopus and zebrafish. Dev. Biol. 273, 23–37 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Dorey and E. Amaya for discussions. N.P. is a Wellcome Trust Senior Research Fellow. T.R. was, and M.R. is, a Wellcome Trust Research Associate. This work was funded by the Wellcome Trust. N.I. and N.B. acknowledge support from the National Research Foundation and Medical Research Council of South Africa.

Author information

Authors and Affiliations

Authors

Contributions

T.R. made the constructs, and performed and analysed all the biochemical and most immunostaining experiments. M.R. performed the in situ hybridizations. N.B. and N.I performed and analysed the OP27 experiments. N.P. planned the project, directed the research and wrote the manuscript.

Corresponding author

Correspondence to Nancy Papalopulu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information Figure S1, S2, S3, S4, S5 and S6 (PDF 1157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regad, T., Roth, M., Bredenkamp, N. et al. The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. Nat Cell Biol 9, 531–540 (2007). https://doi.org/10.1038/ncb1573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing