Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neddylation of a breast cancer-associated protein recruits a class III histone deacetylase that represses NFκB-dependent transcription

Abstract

Neddylation has an important role in ubiquitin-mediated protein degradation through modification of cullins, which are the main substrates for NEDD8 modification. Here, we show that breast cancer–associated protein 3 (BCA3) is a NEDD8 substrate. BCA3 suppressed NFκB-dependent transcription through its ability to bind to p65 and the cyclin D1 promoter in a neddylation-dependent manner. Transcriptional suppression mediated by BCA3 may be attributed to the ability of neddylated BCA3 to recruit SIRT1, a class III histone deacetylase. Silencing of endogenous BCA3 in DU145 and MCF7 cells enhanced NFκB transcription and inhibited tumour necrosis factor (TNF)α-induced apoptosis. Conversely, BCA3 silencing could be reversed by over-expression of wild-type BCA3 and SENP8, a NEDD8-specific protease, but not by neddylation-deficient BCA3 or a SENP8 mutant. These results provide a crucial link between neddylation and transcriptional regulation by SIRT1, a NAD-dependent histone deacetylase that prolongs life span in yeast and worms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BCA3 is modified by NEDD8 in vivo.
Figure 2: BCA3 inhibits TNFα-induced NFκB-dependent transcription in a neddylation-dependent manner.
Figure 3: BCA3 recruits the class III deacetylase SIRT1 in a neddylation-dependent manner.
Figure 4: BCA3 enhances TNFα-induced apoptosis in DU145 cells in a neddylation-dependent fashion.
Figure 5: The effect of BCA3 on TNFα-induced apoptosis in DU145 cells is dependent on SIRT1.

Similar content being viewed by others

References

  1. Yeh, E. T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1–14 (2000).

    Article  CAS  Google Scholar 

  2. Kamitani, T., Kito, K., Nguyen, H. P. & Yeh, E. T. Characterization of NEDD8, a developmentally down-regulated ubiquitin- like protein. J. Biol. Chem. 272, 28557–28562 (1997).

    Article  CAS  Google Scholar 

  3. Osaka, F. et al. A new NEDD8-ligating system for cullin-4A. Genes Dev. 12, 2263–2268 (1998).

    Article  CAS  Google Scholar 

  4. Liakopoulos, D., Busgen, T., Brychzy, A., Jentsch, S. & Pause, A. Conjugation of the ubiquitin-like protein NEDD8 to cullin-2 is linked to von Hippel-Lindau tumor suppressor function. Proc. Natl Acad. Sci. USA 96, 5510–5515 (1999).

    Article  CAS  Google Scholar 

  5. Lammer, D. et al. Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. Genes Dev. 12, 914–926 (1998).

    Article  CAS  Google Scholar 

  6. Wada, H., Yeh, E. T. & Kamitani, T. Identification of NEDD8-conjugation site in human cullin-2. Biochem. Biophys. Res. Commun. 257, 100–105 (1999).

    Article  CAS  Google Scholar 

  7. Liu, J., Furukawa, M., Matsumoto, T. & Xiong, Y. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1–SKP1 binding and SCF ligases. Mol. Cell 10, 1511–1518 (2002).

    Article  CAS  Google Scholar 

  8. Stickle, N. H. et al. pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol. Cell Biol. 24, 3251–3261 (2004).

    Article  CAS  Google Scholar 

  9. Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T. & Lane, D. P. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83–97 (2004).

    Article  CAS  Google Scholar 

  10. Gan-Erdene, T. et al. Identification and characterization of DEN1, a deneddylase of the ULP family. J. Biol. Chem. 278, 28892–28900 (2003).

    Article  CAS  Google Scholar 

  11. Mendoza, H. M. et al. NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J. Biol. Chem. 278, 25637–25643 (2003).

    Article  CAS  Google Scholar 

  12. Oakley, F. et al. Basal expression of IκBα is controlled by the mammalian transcriptional repressor RBP-J (CBF1) and its activator Notch1. J. Biol. Chem. 278, 24359–24370 (2003).

    Article  CAS  Google Scholar 

  13. Qin, H. et al. RING1 inhibits transactivation of RBP-J by Notch through interaction with LIM protein KyoT2. Nucleic Acids Res. 32, 1492–1501 (2004).

    Article  CAS  Google Scholar 

  14. Taniguchi, Y., Furukawa, T., Tun, T., Han, H. & Honjo, T. LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein. Mol. Cell Biol. 18, 644–654 (1998).

    Article  CAS  Google Scholar 

  15. Guttridge, D. C., Albanese, C., Reuther, J. Y., Pestell, R. G. & Baldwin, A. S., Jr . NFκB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell Biol. 19, 5785–5799 (1999).

    Article  CAS  Google Scholar 

  16. Watanabe, G. et al. Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc. Natl Acad. Sci. USA 93, 12861–12866 (1996).

    Article  CAS  Google Scholar 

  17. Hayden, M. S. & Ghosh, S. Signaling to NFκB. Genes Dev 18, 2195–2224 (2004).

    Article  CAS  Google Scholar 

  18. de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. & van Kuilenburg, A. B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749 (2003).

    Article  CAS  Google Scholar 

  19. Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  Google Scholar 

  20. McLaughlin, F. & La Thangue, N. B. Histone deacetylase inhibitors open new doors in cancer therapy. Biochem. Pharmacol. 68, 1139–1144 (2004).

    Article  CAS  Google Scholar 

  21. Gasser, S. M. & Cockell, M. M. The molecular biology of the SIR proteins. Gene 279, 1–16 (2001).

    Article  CAS  Google Scholar 

  22. Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    Article  CAS  Google Scholar 

  23. Yeung, F. et al. Modulation of NFκB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    Article  CAS  Google Scholar 

  24. Bouras, T. et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J. Biol. Chem. 280, 10264–10276 (2005).

    Article  CAS  Google Scholar 

  25. Westerhout, E. M., Ooms, M., Vink, M., Das, A. T. & Berkhout, B. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res. 33, 796–804 (2005).

    Article  CAS  Google Scholar 

  26. Zeng, Y. & Cullen, B. R. Sequence requirements for micro RNA processing and function in human cells. Rna 9, 112–123 (2003).

    Article  CAS  Google Scholar 

  27. Kitching, R. et al. Characterization of a novel human breast cancer associated gene (BCA3) encoding an alternatively spliced proline-rich protein. Biochim. Biophys. Acta 1625, 116–121 (2003).

    Article  CAS  Google Scholar 

  28. Sastri, M., Barraclough, D. M., Carmichael, P. T. & Taylor, S. S. A-kinase-interacting protein localizes protein kinase A in the nucleus. Proc. Natl Acad. Sci. USA 102, 349–354 (2005).

    Article  CAS  Google Scholar 

  29. Cheng, J., Wang, D., Wang, Z. & Yeh, E. T. SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase I. Mol. Cell Biol. 24, 6021–6028 (2004).

    Article  CAS  Google Scholar 

  30. Gong, L., Millas, S., Maul, G. G. & Yeh, E. T. Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem. 275, 3355–3359 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) R01 CA 80089 to E.T.H.Y, National Natural Science Foundation of China (30400237) to F.G. and CA-16672 (M.D. Anderson Cancer Center; MDACC).

Author information

Authors and Affiliations

Authors

Contributions

F.G., J.C. and E.T.H.Y. conceived and designed the experiments. F.G. and T.S. performed the experiments. F.G. and E.T.H.Y wrote the paper.

Corresponding author

Correspondence to Edward T. H. Yeh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 582 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Cheng, J., Shi, T. et al. Neddylation of a breast cancer-associated protein recruits a class III histone deacetylase that represses NFκB-dependent transcription. Nat Cell Biol 8, 1171–1177 (2006). https://doi.org/10.1038/ncb1483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1483

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing