Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability

An Addendum to this article was published on 01 December 2007

An Erratum to this article was published on 01 April 2007

Abstract

Post-translational addition of O-linked N-acetylglucosamine (O-GlcNAc) to p53 is known to occur, but the site of O-GlcNAcylation and its effects on p53 are not understood. Here, we show that Ser 149 of p53 is O-GlcNAcylated and that this modification is associated with decreased phosphorylation of p53 at Thr 155, which is a site that is targeted by the COP9 signalosome, resulting in decreased p53 ubiquitination. Accordingly, O-GlcNAcylation at Ser 149 stabilizes p53 by blocking ubiquitin-dependent proteolysis. Our results indicate that the dynamic interplay between O-GlcNAc and O-phosphate modifications coordinately regulate p53 stability and activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Streptozotocin, an O-GlcNAcase inhibitor, decreases cell viability and increases the accumulation and O-GlcNAcylation of p53 in MCF-7 cells.
Figure 2: O-GlcNAcylation of p53 by STZ treatment reduces p53 ubiquitination and p53–Mdm2 interactions in MCF-7 cells.
Figure 3: O-GlcNAcylation of p53 by STZ treatment inhibits phosphorylation of p53 at Thr 155 in MCF-7 cells.
Figure 4: Tumour suppressor p53 is modified by O-GlcNAc at Ser 149 in MCF-7 cells.
Figure 5: Mutation of the p53 O-GlcNAcylation site (Ser 149) abrogates STZ-induced p53 accumulation in MCF-7 cells.
Figure 6: Mutation of the p53 O-GlcNAcylation site (Ser 149) abrogates STZ-induced p53 accumulation in p53-knockout H1299 cells.

Similar content being viewed by others

References

  1. Vousden, K. H. p53: death star. Cell 103, 691–694 (2000).

    Article  CAS  Google Scholar 

  2. Hollstein, M. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551–3555 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bargonetti, J. & Manfredi, J. J. Multiple roles of the tumor suppressor p53. Curr. Opin. Oncol. 14, 86–91 (2002).

    Article  CAS  Google Scholar 

  4. Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer 4, 793–805 (2004).

    Article  CAS  Google Scholar 

  5. Shieh, S. Y., Taya, Y. & Prives, C. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser 20, requires tetramerization. EMBO J. 18, 1815–1823 (1999).

    Article  CAS  Google Scholar 

  6. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14, 278–288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

    Article  CAS  Google Scholar 

  9. Sakaguchi, K. et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J. Biol. Chem. 275, 9278–9283 (2000).

    Article  CAS  Google Scholar 

  10. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).

    Article  CAS  Google Scholar 

  11. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  Google Scholar 

  12. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    Article  CAS  Google Scholar 

  13. Barak, Y., Juven, T., Haffner, R. & Oren, M. Mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461–468 (1993).

    Article  CAS  Google Scholar 

  14. Bech-Otschir, D. et al. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J. 20, 1630–1639 (2001).

    Article  CAS  Google Scholar 

  15. Ito, A. et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331–1340 (2001).

    Article  CAS  Google Scholar 

  16. Rodriguez, M. S., Desterro, J. M., Lain, S., Lane, D. P. & Hay, R. T. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell. Biol. 20, 8458–8467 (2000).

    Article  CAS  Google Scholar 

  17. Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455–6461 (1999).

    Article  CAS  Google Scholar 

  18. Gostissa, M. et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 18, 6462–6471 (1999).

    Article  CAS  Google Scholar 

  19. Fuchs, S. Y., Lee, C. G., Pan, Z. Q. & Ronai, Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 110, 531 (2002).

    Article  Google Scholar 

  20. Kearse, K. P. & Hart, G. W. Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins. Proc. Natl Acad. Sci. U.S.A. 88, 1701–1705 (1991).

    Article  CAS  Google Scholar 

  21. Wells, L., Vosseller, K. & Hart, G. W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378 (2001).

    Article  CAS  Google Scholar 

  22. Hanover, J. A. Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J. 15, 1865–1876 (2001).

    Article  CAS  Google Scholar 

  23. Shaw, P., Freeman, J., Bovey, R. & Iggo, R. Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene 12, 921–930 (1996).

    CAS  PubMed  Google Scholar 

  24. Toleman, C., Paterson, A. J., Shin, R. & Kudlow, J. E. Streptozotocin inhibits O-GlcNAcase via the production of a transition state analog. Biochem. Biophys. Res. Commun. 340, 526–534 (2006).

    Article  CAS  Google Scholar 

  25. Wells, L. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics 1, 791–804 (2002).

    Article  CAS  Google Scholar 

  26. Chalkley, R. J. & Burlingame, A. L. Identification of novel sites of O-N-acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry. Mol. Cell. Proteomics 2, 182–190 (2003).

    Article  CAS  Google Scholar 

  27. Lowe, S. W. et al. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810 (1994).

    Article  CAS  Google Scholar 

  28. Kang, H. T., Ju, J. W., Cho, J. W. & Hwang, E. S. Down-regulation of Sp1 activity through modulation of O-glycosylation by treatment with a low glucose mimetic, 2-deoxyglucose. J. Biol. Chem. 278, 51223–51231 (2003).

    Article  CAS  Google Scholar 

  29. Konrad, R. J., Mikolaenko, I., Tolar, J. F., Liu, K. & Kudlow, J. E. The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic β-cell O-GlcNAc-selective N-acetyl-β-D-glucosaminidase. Biochem. J. 356, 31–41 (2001).

    Article  CAS  Google Scholar 

  30. Bech-Otschir, D., Seeger, M. & Dubiel, W. The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. J. Cell Sci. 115, 467–473 (2002).

    CAS  PubMed  Google Scholar 

  31. Comer, F. I. & Hart, G. W. O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J. Biol. Chem. 275, 29179–29182 (2000).

    Article  CAS  Google Scholar 

  32. Clore, G. M. et al. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nature Struct. Biol. 2, 321–333 (1995).

    Article  CAS  Google Scholar 

  33. Kawaguchi, T. et al. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene 24, 6976–6981 (2005).

    Article  CAS  Google Scholar 

  34. Saito, S. et al. Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J. Biol. Chem. 278, 37536–37544 (2003).

    Article  CAS  Google Scholar 

  35. Prives, C., & Hall, P. A. The p53 pathway. J. Pathol. 187, 112–126 (1999).

    Article  CAS  Google Scholar 

  36. Schon, O., Friedler, A., Bycroft, M., Freund, S. M., & Fersht, A. R. Molecular mechanism of the interaction between MDM2 and p53. J. Mol. Biol. 323, 491–501 (2002).

    Article  CAS  Google Scholar 

  37. Canadillas, J. M. et al. Solution structure of p53 core domain: structural basis for its instability. Proc. Natl Acad. Sci. USA 103, 2109–2114 (2006).

    Article  Google Scholar 

  38. Cheng, X., Cole, R. N., Zaia, J. & Hart, G. W. Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor β. Biochemistry 39, 11609–11620 (2000).

    Article  CAS  Google Scholar 

  39. Cheng, X. & Hart, G. W. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor β: post-translational regulation of turnover and transactivation activity. J. Biol. Chem. 276, 10570–10575 (2001).

    Article  CAS  Google Scholar 

  40. Gao, Y., Parker, G. J. & Hart, G. W. Streptozotocin-induced β-cell death is independent of its inhibition of O-GlcNAcase in pancreatic Min6 cells. Arch. Biochem. Biophys. 383, 296–302 (2000).

    Article  CAS  Google Scholar 

  41. Haltiwanger, R. S., Grove, K. & Philipsberg, G. A. Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-β-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate. J. Biol. Chem. 273, 3611–3617 (1998).

    Article  CAS  Google Scholar 

  42. Zhang, F. et al. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115, 715–725 (2003).

    Article  CAS  Google Scholar 

  43. Liu, K. et al. Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. J. Neurochem. 89, 1044–1055 (2004).

    Article  CAS  Google Scholar 

  44. Fiordaliso, F. et al. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50, 2363–2375 (2001).

    Article  CAS  Google Scholar 

  45. Licitra, L. et al. Prediction of TP53 status for primary cisplatin, fluorouracil, and leucovorin chemotherapy in ethmoid sinus intestinal-type adenocarcinoma. J. Clin. Oncol. 22, 4901–4906 (2004).

    Article  CAS  Google Scholar 

  46. Hsu, C. H., Yang, S. A., Wang, J. Y., Yu, H. S. & Lin, S. R. Mutational spectrum of p53 gene in arsenic-related skin cancers from the blackfoot disease endemic area of Taiwan. Br. J. Cancer 80, 1080–1086 (1999).

    Article  CAS  Google Scholar 

  47. Morgan, S. E. et al. Differences in mutant p53 protein stability and functional activity in teniposide-sensitive and -resistant human leukemic CEM cells. Oncogene 19, 5010–5019 (2000).

    Article  CAS  Google Scholar 

  48. Ryu, J. et al. Intracellular delivery of p53 fused to the basic domain of HIV-1 tat. Mol. Cells 17, 353–359 (2004).

    CAS  PubMed  Google Scholar 

  49. Wang, W., Takimoto, R., Rastinejad, F. & El-Deiry, W. S. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol. Cell. Biol. 23, 2171–2181 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Korea Science and Engineering Foundation through the center for Protein Network Research Center at Yonsei University (R112000078020010); the Glycomics Research Program of Ministry of Science and Technology (2004-02130 to J.W.C.); a Korea Research Foundation Grant (KRF-2004-005-C00112), through the Yonsei Biomedical Science and Technology Initiative Program; and, in part, by a grant from the Korea Health 21 R&D Project, via the Ministry of Health & Welfare, Republic of Korea (03-PJ10-PG6-GP01-0002). This work was also supported, in part, by Brain Korea 21 project. This work was made possible through the use of research facilities in the Yonsei Center for Biotechnology.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed and data were analysed by W.H.Y. Mass spectrometry was performed by J.E.K., H.W.N. and Y.S.K. Data were analysed and interpreted by J.W.J., H.S.K. and J.W.C. The paper was written by J.W.C.

Corresponding author

Correspondence to Jin Won Cho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Kim, J., Nam, H. et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol 8, 1074–1083 (2006). https://doi.org/10.1038/ncb1470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing