Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coordination of calcium signalling by endothelial-derived nitric oxide in the intact liver

Abstract

Calcium ions (Ca2+) and nitric oxide (NO) are key signalling molecules that are implicated in the regulation of numerous cellular processes. Here we show that, in the intact liver, stimulation of endothelial cells by bradykinin coordinates the propagation of vasopressin-dependent intercellular Ca2+ waves across hepatic plates, and markedly increases the frequency of Ca2+ oscillations in individual hepatocytes. Modulation of Ca2+ oscillations by bradykinin is lost following isolation of hepatocytes, but restored in co-cultures of hepatocytes and endothelial cells. The sensitizing effects of bradykinin are mimicked by NO donors and abrogated by NO inhibitors. Thus, crosstalk between NO and Ca2+ signalling pathways through the microvasculature is probably an important mechanism for the coordination of liver function and may have a function in other organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ca2+ signals in the intact liver and their modulation by bradykinin.
Figure 2: Effect of bradykinin on Ca2+ concentration in the intact liver.
Figure 3: Effect of bradykinin on Ca2+ concentration in isolated hepatocytes and cultured endothelial cells.
Figure 4: Modulation of Ca2+ oscillations by bradykinin in co-cultures of isolated hepatocytes and endothelial cells.
Figure 5: Effect of desensitization of hepatocyte purinergic receptors on the modulation of Ca2+ oscillations by bradykinin in the intact liver.
Figure 6: Effects of l-NAME, cPTIO and spermine NONOate on Ca2+ signals in isolated hepatocytes.
Figure 7: Effects of l-NAME and cPTIO on bradykinin-induced sensitization of hepatic Ca2+ signals in the intact liver and in hepatocyte/endothelial co-cultures.

Similar content being viewed by others

References

  1. Berridge, M. J. Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Taylor, C. W. & Traynor, D. Calcium and inositol trisphosphate receptors. J. Membr. Biol. 145, 109–118 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Patel, S., Joseph, S. K. & Thomas, A. P. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25, 247–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Hajnóczky, G., Robb-Gaspers, L. D., Seitz, M. B. & Thomas, A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424 (1995).

    Article  PubMed  Google Scholar 

  5. Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Dolmetsch, R. E., Xu, K. & Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Li, W.-H., llopis, J., Whitney, M., Zlokarnik, G. & Tsien, R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Berridge, M. J. Elementary and global aspects of calcium signalling. J. Exp. Biol. 200, 315–319 (1997).

    CAS  PubMed  Google Scholar 

  9. Thomas, A. P., Bird, G. St J., Hajnóczky, G., Robb-Gaspers, L. D. & Putney, J. W. Jr Spatial and temporal aspects of cellular calcium signaling. FASEB J. 10, 1505–1517 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Sanderson, M. J., Charles, A. C., Boitano, S. & Dirksen, E. R. Mechanisms and function of intercellular calcium signaling. Mol. Cell. Endocrinol. 98, 173–187 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Moncada, S., Palmer, R. M. J. & Higgs, E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991).

    CAS  PubMed  Google Scholar 

  12. Bredt, D. S. & Snyder, S. H. Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63, 175–195 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Robb-Gaspers, L. D. & Thomas, A. P. Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J. Biol. Chem. 270, 8102–8107 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Pearson, J. D. & Gordon, J. L. Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides. Nature 281, 384–386 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. Ralevic, V. & Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 4, 13–92 (1998).

    Google Scholar 

  16. Dixon, C. J., Woods, N. M., Cuthbertson, K. S. R. & Cobbold, P. H. Evidence for two Ca2+-mobilizing purinoreceptors on rat hepatocytes. Biochem. J. 269, 499–502 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rooney, T. A., Joseph, S. K., Queen, C. & Thomas, A. P. Cyclic GMP induces oscillatory calcium signals in rat hepatocytes. J. Biol. Chem. 271, 19817–19825 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Guihard, G., Combettes, L. & Capiod, T. 3":5"-cyclic guanosine monophosphate (cGMP) potentiates the inositol 1,4,5-trisphosphate-evoked Ca2+ release in guinea-pig hepatocytes. Biochem. J. 318, 849–855 (1996).

  19. Akaike, T. et al. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/.NO through a radical reaction. Biochemistry 32, 827–832 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Robb-Gaspers, L. D. et al. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J. 17, 4987–5000 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Koninck, P. & Schulman, H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279, 191–192 (1998).

    Article  Google Scholar 

  22. Oancea, E. & Meyer, T. Protein kinase C as a molecular machine for decoding calcium and diacyl glycerol signals. Cell 95, 307–318 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Leybaert, L., Paemeleire, K., Strahonja, A. & Sanderson, M. J. Inositol-trisphosphate-dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia 24, 398–407 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Patel, S., Santra, M., McQuillan, D. J., Iozzo, R. V. & Thomas, A. P. Decorin activates the epidermal growth factor receptor and elevates cytosolic Ca2+ in A431 carcinoma cells. J. Biol. Chem. 273, 3121–3124 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Morgan, A. J. & Thomas, A. P. Single cell and subcellular measurement of intracellular Ca2+ concentration ([Ca2+]i). Methods Mol. Biol. 114, 93–123 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A.D. Michel, B.M. Hantash, L.S. Jouaville, W.N. Duran, G.C. Churchill and A. Galione for helpful comments; and M.J. Woolkalis for initial provision of CPAE cells. This work was supported by grants from the NIH (to A.P.T.) and a Wellcome Prize Travel Research Fellowship (to S.P.).

Correspondence and requests for materials should be addressed to A.P.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S., Robb-Gaspers, L., Stellato, K. et al. Coordination of calcium signalling by endothelial-derived nitric oxide in the intact liver. Nat Cell Biol 1, 467–471 (1999). https://doi.org/10.1038/70249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing