Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models

Abstract

Nijmegen breakage syndrome (NBS) is a chromosomal fragility disorder that shares clinical and cellular features with ataxia telangiectasia. Here we demonstrate that Nbs1-null B cells are defective in the activation of ataxia-telangiectasia-mutated (Atm) in response to ionizing radiation, whereas ataxia-telangiectasia- and Rad3-related (Atr)-dependent signalling and Atm activation in response to ultraviolet light, inhibitors of DNA replication, or hypotonic stress are intact. Expression of the main human NBS allele rescues the lethality of Nbs1−/− mice, but leads to immunodeficiency, cancer predisposition, a defect in meiotic progression in females and cell-cycle checkpoint defects that are associated with a partial reduction in Atm activity. The Mre11 interaction domain of Nbs1 is essential for viability, whereas the Forkhead-associated (FHA) domain is required for T-cell and oocyte development and efficient DNA damage signalling. Reconstitution of Nbs1 knockout mice with various mutant isoforms demonstrates the biological impact of impaired Nbs1 function at the cellular and organismal level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human Nbs1 functionally replaces mouse Nbs1.
Figure 2: Infertility in hNbs1657Δ5 female mice.
Figure 3: Abnormal T-cell development in hNbs1657Δ5 mice.
Figure 4: Class-switch recombination and lymphoma predisposition in hNbs1657Δ5 mice.
Figure 5: Response to cellular stress in Nbs1 knockout and hypomorphic mutant B cells.
Figure 6: Association of Mre11 with DSBs in hNbs1657Δ5 B cells.
Figure 7: Inefficient accumulation of Mre11 at DSBs and at sites of DNA replication.
Figure 8: Role of the Nbs1 FHA and Mre11-binding domains in vivo.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. D'Amours, D. & Jackson, S. P. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nature Rev. Mol. Cell Biol. 3, 317–327 (2002).

    Article  CAS  Google Scholar 

  2. Stracker, T. H., Theunissen, J. W., Morales, M. & Petrini, J. H. The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst) 3, 845–854 (2004).

    Article  CAS  Google Scholar 

  3. Xiao, Y. & Weaver, D. T. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res. 25, 2985–2991 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luo, G. et al. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc. Natl Acad. Sci. USA 96, 7376–7381 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu, J., Petersen, S., Tessarollo, L. & Nussenzweig, A. Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr. Biol. 11, 105–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Dumon-Jones, V. et al. Nbn heterozygosity renders mice susceptible to tumor formation and ionizing radiation-induced tumorigenesis. Cancer Res. 63, 7263–7269 (2003).

    CAS  PubMed  Google Scholar 

  7. Maser, R. S., Zinkel, R. & Petrini, J. H. An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nature Genet. 27, 417–421 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Falck, J., Coates, J. & Jackson, S. P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Kang, J., Bronson, R. T. & Xu, Y. Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J. 21, 1447–1455 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Williams, B. R. et al. A murine model of Nijmegen breakage syndrome. Curr. Biol. 12, 648–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–56121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, J. H. & Paull, T. T. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304, 93–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Horejsi, Z. et al. Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene 23, 3122–3127 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Cerosaletti, K. & Concannon, P. Independent roles for nibrin and Mre11-Rad50 in the activation and function of Atm. J. Biol. Chem. 279, 38813–38819 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Carson, C. T. et al. The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J. 22, 6610–6620 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kitagawa, R., Bakkenist, C. J., McKinnon, P. J. & Kastan, M. B. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev. 18, 1423–1438 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Costanzo, V., Paull, T., Gottesman, M. & Gautier, J. Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol. 2, E110 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Buscemi, G. et al. Chk2 activation dependence on Nbs1 after DNA damage. Mol. Cell. Biol. 21, 5214–5222 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Mochan, T. A., Venere, M., DiTullio, R. A. Jr & Halazonetis, T. D. 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res. 63, 8586–8591 (2003).

    CAS  PubMed  Google Scholar 

  21. Lim, D. S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Falck, J., Petrini, J. H., Williams, B. R., Lukas, J. & Bartek, J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nature Genet. 30, 290–294 (2002).

    Article  PubMed  Google Scholar 

  23. Tauchi, H. et al. Sequence analysis of an 800-kb genomic DNA region on chromosome 8q21 that contains the Nijmegen breakage syndrome gene, NBS1. Genomics 55, 242–247 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, H. T. et al. Response to RAG-mediated VDJ cleavage by NBS1 and γ-H2AX. Science 290, 1962–1965 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, Y. & Sharan, S. K. A simple two-step, 'hit and fix' method to generate subtle mutations in BACs using short denatured PCR fragments. Nucleic Acids Res. 31, e80 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bassing, C. H. & Alt, F. W. The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst) 3, 781–796 (2004).

    Article  CAS  Google Scholar 

  27. Reina-San-Martin, B., Nussenzweig, M. C., Nussenzweig, A. & Difilippantonio, S. Genomic instability, endoreduplication, and diminished Ig class-switch recombination in B cells lacking Nbs1. Proc. Natl Acad. Sci. USA 102, 1590–1595 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reina-San-Martin, B., Chen, H. T., Nussenzweig, A. & Nussenzweig, M. C. ATM is required for recombination between immunoglobulin switch regions. J. Exp. Med. 200, 1103–1110 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lumsden, J. M. et al. Immunoglobulin class switch recombination is impaired in Atm-deficient mice. J. Exp. Med. 200, 1111–1121 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pan, Q. et al. Alternative end joining during switch recombination in patients with ataxia-telangiectasia. Eur. J. Immunol. 32, 1300–1308 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Gregorek, H., Chrzanowska, K. H., Michalkiewicz, J., Syczewska, M. & Madalinski, K. Heterogeneity of humoral immune abnormalities in children with Nijmegen breakage syndrome: an 8-year follow-up study in a single centre. Clin. Exp. Immunol. 130, 319–324 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kracker, S. et al. Nibrin functions in Ig class-switch recombination. Proc. Natl Acad. Sci. USA 102, 1584–1589 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Difilippantonio, M. J. et al. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J. Exp. Med. 196, 469–480 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Celeste, A. et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114, 371–383 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114, 359–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Stiff, T. et al. Nbs1 is required for ATR-dependent phosphorylation events. EMBO J. 24, 199–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol. 5, 675–679 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Maser, R. S. et al. Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol. Cell Biol. 21, 6006–6016 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, J. H. et al. Distinct functions of Nijmegen breakage syndrome in ataxia telangiectasia mutated-dependent responses to DNA damage. Mol. Cancer Res. 1, 674–681 (2003).

    CAS  PubMed  Google Scholar 

  41. Cerosaletti, K. M. & Concannon, P. Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation. J. Biol. Chem. 278, 21944–21951 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, S., Renthal, W. & Lee, E. Y. Functional analysis of FHA and BRCT domains of NBS1 in chromatin association and DNA damage responses. Nucleic Acids Res. 30, 4815–4822 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tauchi, H. et al. The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50·hMRE11·NBS1 complex DNA repair activity. J. Biol. Chem. 276, 12–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Demuth, I. et al. An inducible null mutant murine model of Nijmegen breakage syndrome proves the essential function of NBS1 in chromosomal stability and cell viability. Hum. Mol. Genet. 13, 2385–2397 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Davalos, A. R., Kaminker, P., Hansen, R. K. & Campisi, J. ATR and ATM-dependent movement of BLM helicase during replication stress ensures optimal ATM activation and 53BP1 focus formation. Cell Cycle 3, 1579–1586 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Andegeko, Y. et al. Nuclear retention of ATM at sites of DNA double strand breaks. J. Biol. Chem. 276, 38224–38230 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Petrini, S. Ganesan and A. Lee for generously providing antibodies, R. Kitagawa for experimental protocols, A. Hohenstein and N. Puri for assistance with western blotting, L. Stapleton and T. Ried for chromosome paints, M. Kastan and Y. Shiloh for helpful suggestions, and M. Difilippantonio and M. Pellegrini for comments on the manuscript. This work was supported in part by grants from NIH and the Leukemia Society to M.C.N. M.C.N. is an HHMI investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Nussenzweig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 - S4 and supplementary methods (PDF 1330 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Difilippantonio, S., Celeste, A., Fernandez-Capetillo, O. et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7, 675–685 (2005). https://doi.org/10.1038/ncb1270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing