Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization


Drosophila melanogaster cellularization is a dramatic form of cytokinesis in which a membrane furrow simultaneously encapsulates thousands of cortical nuclei of the syncytial embryo to generate a polarized cell layer. Formation of this cleavage furrow depends on Golgi-based secretion and microtubules1,2,3. During cellularization, specific Golgi move along microtubules, first to sites of furrow formation and later to accumulate within the apical cytoplasm of the newly forming cells3. Here we show that Golgi movements and furrow formation depend on cytoplasmic dynein. Furthermore, we demonstrate that Lava lamp (Lva), a golgin protein that is required for cellularization, specifically associates with dynein, dynactin, cytoplasmic linker protein-190 (CLIP-190) and Golgi spectrin, and is required for the dynein-dependent targeting of the secretory machinery. The Lva domains that bind these microtubule-dependent motility factors inhibit Golgi movement and cellularization in a live embryo injection assay. Our results provide new evidence that golgins promote dynein-based motility of Golgi membranes.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Golgi body movements are microtubule- and dynein-dependent.
Figure 2: Golgi-localized cytoplasmic dynein, Lva and spectrin associate in cellularizing embryos.
Figure 3: Lva binds microtubule motility factors through central and C-terminal domains, and Golgi membrane through N-terminal domains.
Figure 4: The microtubule motility-factor-binding domains of Lva disrupt Golgi movement and furrowing in live embryos, consistent with an adaptor model for Lva function.

Accession codes




  1. Foe, V. E., Odell, G. & Edgar, B. A. in The Development of Drosophila melanogaster (eds Bate, M. & Martinez Arias, A.) 149–300 (Cold Spring Harbor Laboratory Press, Plainview, NY, 1993).

    Google Scholar 

  2. Lecuit, T. & Wieschaus, E. Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J. Cell Biol. 150, 849–860 (2000).

    CAS  Article  Google Scholar 

  3. Sisson, J. C., Field, C., Ventura, R., Royou, A. & Sullivan, W. Lava lamp, a novel peripheral golgi protein, is required for Drosophila melanogaster cellularization. J. Cell Biol. 151, 905–918 (2000).

    CAS  Article  Google Scholar 

  4. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    CAS  Article  Google Scholar 

  5. Vallee, R. B., Williams, J. C., Varma, D. & Barnhart, L. E. Dynein: An ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58, 189–200 (2004).

    CAS  Article  Google Scholar 

  6. Burkhardt, J. K. The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex. Biochim. Biophys. Acta 1404, 113–126 (1998).

    CAS  Article  Google Scholar 

  7. King, S. J. & Schroer, T. A. Dynactin increases the processivity of the cytoplasmic dynein motor. Nature Cell Biol. 2, 20–24 (2000).

    CAS  Article  Google Scholar 

  8. Holleran, E. A. et al. βIII spectrin binds to the Arp1 subunit of dynactin. J. Biol. Chem. 276, 36598–36605 (2001).

    CAS  Article  Google Scholar 

  9. Schroer, T. A. Dynactin. Annu. Rev. Cell Dev. Biol. 20, 759–779 (2004).

    CAS  Article  Google Scholar 

  10. Kumar, S., Lee, I. H. & Plamann, M. Cytoplasmic dynein ATPase activity is regulated by dynactin-dependent phosphorylation. J. Biol. Chem. 275, 31798–31804 (2000).

    CAS  Article  Google Scholar 

  11. Royou, A., Field, C., Sisson, J. C., Sullivan, W. & Karess, R. Reassessing the role and dynamics of nonmuscle myosin II during furrow formation in early Drosophila embryos. Mol. Biol. Cell 15, 838–850 (2004).

    CAS  Article  Google Scholar 

  12. Mimori-Kiyosue, Y. & Tsukita, S. “Search-and-capture” of microtubules through plus-end-binding proteins (+TIPs). J. Biochem. (Tokyo) 134, 321–326 (2003).

    CAS  Article  Google Scholar 

  13. Akhmanova, A. & Hoogenraad, C. C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54 (2005).

    CAS  Article  Google Scholar 

  14. Lantz, V. A. & Miller, K. G. A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J. Cell Biol. 140, 897–910 (1998).

    CAS  Article  Google Scholar 

  15. Pierre, P., Scheel, J., Rickard, J. E. & Kreis, T. E. CLIP-170 links endocytic vesicles to microtubules. Cell 70, 887–900 (1992).

    CAS  Article  Google Scholar 

  16. Hoogenraad, C. C. et al. Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes. EMBO J. 20, 4041–4054 (2001).

    CAS  Article  Google Scholar 

  17. Short, B., Preisinger, C., Schaletzky, J., Kopajtich, R. & Barr, F. A. The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr. Biol. 12, 1792–1795 (2002).

    CAS  Article  Google Scholar 

  18. Matanis, T. et al. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nature Cell Biol. 4, 986–992 (2002).

    CAS  Article  Google Scholar 

  19. Hoogenraad, C. C. et al. Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO J. 22, 6004–6015 (2003).

    CAS  Article  Google Scholar 

  20. Turner, F. R. & Mahowald, A. P. Scanning electron microscopy of Drosophila embryogenesis. 1. The structure of the egg envelopes and the formation of the cellular blastoderm. Dev. Biol. 50, 95–108 (1976).

    CAS  Article  Google Scholar 

  21. Fullilove, S. L. & Jacobson, A. G. Nuclear elongation and cytokinesis in Drosophila montana. Dev. Biol. 26, 560–577 (1971).

    CAS  Article  Google Scholar 

  22. Robinson, J. T., Wojcik, E. J., Sanders, M. A., McGrail, M. & Hays, T. S. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J. Cell Biol. 146, 597–608 (1999).

    CAS  Article  Google Scholar 

  23. McGrail, M. & Hays, T. S. The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124, 2409–2419 (1997).

    CAS  Google Scholar 

  24. Waterman-Storer, C. M. & Holzbaur, E. L. The product of the Drosophila gene, Glued, is the functional homologue of the p150Glued component of the vertebrate dynactin complex. J. Biol. Chem. 271, 1153–1159 (1996).

    CAS  Article  Google Scholar 

  25. Fan, S. S. & Ready, D. F. Glued participates in distinct microtubule-based activities in Drosophila eye development. Development 124, 1497–1507 (1997).

    CAS  PubMed  Google Scholar 

  26. Suter, B. & Steward, R. Requirement for phosphorylation and localization of the Bicaudal-D protein in Drosophila oocyte differentiation. Cell 67, 917–926 (1991).

    CAS  Article  Google Scholar 

  27. Field, C. M. & Alberts, B. M. Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J. Cell Biol. 131, 165–178 (1995).

    CAS  Article  Google Scholar 

  28. Byers, T. J., Dubreuil, R., Branton, D., Kiehart, D. P. & Goldstein, L. S. Drosophila spectrin. II. Conserved features of the α-subunit are revealed by analysis of cDNA clones and fusion proteins. J. Cell Biol. 105, 2103–2110 (1987).

    CAS  Article  Google Scholar 

  29. Sharp, D. J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241–253 (2000).

    CAS  Article  Google Scholar 

  30. Lansbergen, G. et al. Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. J. Cell Biol. 166, 1003–1014 (2004).

    CAS  Article  Google Scholar 

Download references


The authors thank B. Sullivan for his valued contributions during the early phase of this study, D. Branton, K. Miller, J. Scholey, C. Field, D. Ready, C. Field and B. Suter for their generous antibody gifts, A. Royou and R. Karess for the MyoII–GFP stock, A. De Lozanne, J. Fischer and W. Sullivan for their comments on the manuscript, S. Paige and L. Zhou for technical assistance, and the entire Sisson laboratory for contributions, both big and small. We sincerely apologize to those whose outstanding work was not cited due to referencing constraints. This study was supported by the National Institutes of Health grants GM067013 (J.C.S.) and GM053695 (T.S.H.), and The March of Dimes Basil O'Connor Award (J.C.S.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to John C. Sisson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Papoulas, O., Hays, T. & Sisson, J. The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nat Cell Biol 7, 612–618 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing