Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CtBP3/BARS drives membrane fission in dynamin-independent transport pathways

An Addendum to this article was published on 01 October 2005

A Corrigendum to this article was published on 01 June 2005

Abstract

Membrane fission is a fundamental step in membrane transport. So far, the only fission protein machinery that has been implicated in in vivo transport involves dynamin, and functions in several, but not all, transport pathways. Thus, other fission machineries may exist. Here, we report that carboxy-terminal binding protein 3/brefeldin A-ribosylated substrate (CtBP3/BARS) controls fission in basolateral transport from the Golgi to the plasma membrane and in fluid-phase endocytosis, whereas dynamin is not involved in these steps. Conversely, CtBP3/BARS protein is inactive in apical transport to the plasma membrane and in receptor-mediated endocytosis, both steps being controlled by dynamin. This indicates that CtBP3/BARS controls membrane fission in endocytic and exocytic transport pathways, distinct from those that require dynamin.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Effects of BARS microinjection on post-Golgi transport of VSVG in COS7 cells.
Figure 2: Characterization of the effects of BARS on post-Golgi VSVG transport.
Figure 3: Effects of BARS inhibition on post-Golgi transport of VSVG.
Figure 4: The roles of BARS and dynamin in post-Golgi carrier formation.
Figure 5: Differential roles of BARS and dynamin in the export of VSVG and p75 from the TGN.
Figure 6: Differential requirements for BARS and dynamin in transferrin and fluid-phase endocytosis.

References

  1. Corda, D., Hidalgo Carcedo, C., Bonazzi, M., Luini, A. & Spano, S. Molecular aspects of membrane fission in the secretory pathway. Cell. Mol. Life Sci. 59, 1819–1832 (2002).

    CAS  Article  Google Scholar 

  2. Praefcke, G.J. & McMahon, H.T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol. 5, 133–147 (2004).

    CAS  Article  Google Scholar 

  3. Pelkmans, L. & Helenius, A. Insider information: what viruses tell us about endocytosis. Curr. Opin. Cell Biol. 15, 414–422 (2003).

    CAS  Article  Google Scholar 

  4. Altschuler, Y. et al. Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms. J. Cell Biol. 143, 1871–1881 (1998).

    CAS  Article  Google Scholar 

  5. Gurunathan, S., David, D. & Gerst, J.E. Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast. EMBO J. 21, 602–614 (2002).

    CAS  Article  Google Scholar 

  6. Harsay, E. & Schekman, R. A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway. J. Cell Biol. 156, 271–285 (2002).

    CAS  Article  Google Scholar 

  7. Luo, W. & Chang, A. An endosome-to-plasma membrane pathway involved in trafficking of a mutant plasma membrane ATPase in yeast. Mol. Biol. Cell 11, 579–592 (2000).

    CAS  Article  Google Scholar 

  8. Conner, S.D. & Schmid, S.L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    CAS  Article  Google Scholar 

  9. McNiven, M.A., Cao, H., Pitts, K.R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 25, 115–120 (2000).

    CAS  Article  Google Scholar 

  10. Schmid, S.L., McNiven, M.A. & De Camilli, P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol. 10, 504–512 (1998).

    CAS  Article  Google Scholar 

  11. Yeaman, C. et al. Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nature Cell Biol. 6, 106–112 (2004).

    CAS  Article  Google Scholar 

  12. Weigert, R. et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402, 429–433 (1999).

    CAS  Article  Google Scholar 

  13. Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    CAS  Article  Google Scholar 

  14. Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495–506 (1999).

    CAS  Article  Google Scholar 

  15. Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

    CAS  Article  Google Scholar 

  16. Yang, J.S. et al. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J. Cell Biol. 159, 69–78 (2002).

    CAS  Article  Google Scholar 

  17. Spano, S. et al. Molecular cloning and functional characterization of brefeldin A-ADP-ribosylated substrate. A novel protein involved in the maintenance of the Golgi structure. J. Biol. Chem. 274, 17705–17710 (1999).

    CAS  Article  Google Scholar 

  18. Hidalgo Carcedo, C. et al. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science 305, 93–96 (2004).

    Article  Google Scholar 

  19. Nardini, M. et al. CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J. 22, 3122–3130 (2003).

    CAS  Article  Google Scholar 

  20. Kumar, V. et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol. Cell 10, 857–869 (2002).

    CAS  Article  Google Scholar 

  21. Chinnadurai, G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell 9, 213–224 (2002).

    CAS  Article  Google Scholar 

  22. Polishchuk, E.V., Di Pentima, A., Luini, A. & Polishchuk, R.S. Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol. Biol. Cell 14, 4470–4485 (2003).

    CAS  Article  Google Scholar 

  23. Boulan, E.R. & Pendergast, M. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20, 45–54 (1980).

    Article  Google Scholar 

  24. Matlin, K.S. & Simons, K. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell 34, 233–243 (1983).

    CAS  Article  Google Scholar 

  25. Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).

    CAS  Article  Google Scholar 

  26. Polishchuk, R., Pentima, A.D. & Lippincott-Schwartz, J. Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nature Cell Biol. 6, 297–307 (2004).

    CAS  Article  Google Scholar 

  27. Polishchuk, R.S. et al. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol. 148, 45–58 (2000).

    CAS  Article  Google Scholar 

  28. Kasai, K., Shin, H.W., Shinotsuka, C., Murakami, K. & Nakayama, K. Dynamin II is involved in endocytosis but not in the formation of transport vesicles from the trans-Golgi network. J. Biochem. (Tokyo) 125, 780–789 (1999).

    CAS  Article  Google Scholar 

  29. Cao, H., Thompson, H.M., Krueger, E.W. & McNiven, M.A. Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J. Cell Sci. 113, 1993–2002 (2000).

    CAS  PubMed  Google Scholar 

  30. Jones, S.M., Howell, K.E., Henley, J.R., Cao, H. & McNiven, M.A. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279, 573–577 (1998).

    CAS  Article  Google Scholar 

  31. Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol. 2, 125–127 (2000).

    CAS  Article  Google Scholar 

  32. Keller, P., Toomre, D., Diaz, E., White, J. & Simons, K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature Cell Biol. 3, 140–149 (2001).

    CAS  Article  Google Scholar 

  33. Schalk, E.M., Gosiewska, A., Prather, W. & Peterkofsky, B. Post-transcriptional regulation of the pro alpha 1(I) collagen gene in pro alpha 1(I)-deficient, chemically transformed Syrian hamster embryo fibroblasts. Biochem. Biophys. Res. Commun. 188, 780–785 (1992).

    CAS  Article  Google Scholar 

  34. Damke, H., Baba, T., Warnock, D.E. & Schmid, S.L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934 (1994).

    CAS  Article  Google Scholar 

  35. Sabharanjak, S., Sharma, P., Parton, R.G. & Mayor, S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2, 411–423 (2002).

    CAS  Article  Google Scholar 

  36. Guha, A., Sriram, V., Krishnan, K.S. & Mayor, S. Shibire mutations reveal distinct dynamin-independent and -dependent endocytic pathways in primary cultures of Drosophila hemocytes. J. Cell Sci. 116, 3373–3386 (2003).

    CAS  Article  Google Scholar 

  37. Griffiths, G., Pfeiffer, S., Simons, K. & Matlin, K. Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane. J. Cell Biol. 101, 949–964 (1985).

    CAS  Article  Google Scholar 

  38. Hildebrand, J.D. & Soriano, P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol. Cell Biol. 22, 5296–5307 (2002).

    CAS  Article  Google Scholar 

  39. Zhang, Q., Piston, D.W. & Goodman, R.H. Regulation of corepressor function by nuclear NADH. Science 295, 1895–1897 (2002).

    CAS  PubMed  Google Scholar 

  40. Pagano, M. & Jackson, P.K. Wagging the dogma; tissue-specific cell cycle control in the mouse embryo. Cell 118, 535–538 (2004).

    CAS  Article  Google Scholar 

  41. Sage, J., Miller, A.L., Perez-Mancera, P.A., Wysocki, J.M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    CAS  Article  Google Scholar 

  42. Kantheti, P. et al. Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron 21, 111–122 (1998).

    CAS  Article  Google Scholar 

  43. Di Paolo, G. et al. Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin 1 knockout mice. Neuron 33, 789–804 (2002).

    CAS  Article  Google Scholar 

  44. Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).

    CAS  Article  Google Scholar 

  45. Sutterlin, C., Hsu, P., Mallabiabarrena, A. & Malhotra, V. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 109, 359–369 (2002).

    CAS  Article  Google Scholar 

  46. Nardini, M. et al. Crystallization and preliminary X-ray diffraction analysis of brefeldin A-ADP ribosylated substrate (BARS). Acta Crystallogr. D Biol. Crystallogr. 58, 1068–1070 (2002).

    Article  Google Scholar 

  47. Liou, W., Geuze, H.J. & Slot, J.W. Improving structural integrity of cryosections for immunogold labeling. Histochem. Cell Biol. 106, 41–58 (1996).

    CAS  Article  Google Scholar 

  48. Mironov, A.A. et al. Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J. Cell Biol. 155, 1225–1238 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. A. De Matteis for critical reading of the manuscript; M. McNiven, M. A. De Matteis and S. Ponnambalam for antibodies; F. Mirabella for supplying constructs; C. P. Berrie for editorial assistance; and the Italian Association for Cancer Research (AIRC, Milan, Italy), Telethon Italia, and the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR, Italy) for financial support. M.B. and S.S. are fellows of the Italian Foundation for Cancer Research (FIRC, Milan, Italy). This paper is dedicated to the memory of Julius Axelrod.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Luini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bonazzi, M., Spanò, S., Turacchio, G. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat Cell Biol 7, 570–580 (2005). https://doi.org/10.1038/ncb1260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing