Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of diverse biological responses to DNA damage: insights from yeast and p53

An Erratum to this article was published on 01 April 2002

Abstract

The cellular response to ionizing radiation provides a conceptual framework for understanding how a yeast checkpoint system, designed to make binary decisions between arrest and cycling, evolved in a way as to allow reversible arrest, senescence or apoptosis in mammals. We propose that the diversity of responses to ionizing radiation in mammalian cells is possible because of the addition of a new regulatory control module involving the tumour-suppressor gene p53. We review the complex mechanisms controlling p53 activity and discuss how the p53 regulatory module enables cells to grow, arrest or die by integrating DNA damage checkpoint signals with the response to normal mitogenic signalling and the aberrant signalling engendered by oncogene activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of the checkpoint pathways in a, yeast, b, Drosophila and c, mammalian cells.
Figure 2: Abbreviated diagram of p53 structural domains, modification sites and coregulators.
Figure 3: Mechanisms for p53 activation by activated oncogenes.

Similar content being viewed by others

References

  1. Lowndes, N. F. & Murguia, J. R. Sensing and responding to DNA damage. Curr. Opin. Genet. Dev. 10, 17–25 (2000).

    CAS  PubMed  Google Scholar 

  2. Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634 (1989).

    CAS  PubMed  Google Scholar 

  3. Al-Khodairy, F. et al. Identification and characterisation of new elements involved in checkpoints and feedback controls in fission yeast. Mol. Biol. Cell 5, 147–160 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Weinert, T. A. & Hartwell, L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317–322 (1988).

    CAS  PubMed  Google Scholar 

  5. Edwards, R. J., Bentley, N. J. & Carr, A. M. A Rad3–Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nature Cell Biol. 1, 393–398 (1999).

    CAS  PubMed  Google Scholar 

  6. Lindsay, H. D. et al. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12, 382–395 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martinho, R. G. et al. Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J. 17, 7239–7249 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sidorova, J. M. & Breeden, L. L. Rad53-dependent phosphorylation of Swi6 and down-regulation of CLN1 and CLN2 transcription occur in response to DNA damage in Saccharomyces cerevisiae. Genes Dev. 11, 3032–3045 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanchez, Y. et al. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286, 1166–1171 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Little, J. B. Delayed initiation of DNA synthesis in irradiated human diploid cells. Nature 146, 1064–1065 (1968).

    Google Scholar 

  11. Di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).

    CAS  PubMed  Google Scholar 

  12. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  PubMed  Google Scholar 

  13. Little, J. B. & Nove, J. Sensitivity of human diploid fibroblast cell strains from various genetic disorders to acute and protracted radiation exposure. Radiat. Res. 123, 87–92 (1990).

    CAS  PubMed  Google Scholar 

  14. Weichselbaum, R. R., Epstein, J. & Little, J. B. In vitro radiosensitivity of human diploid fibroblasts derived from patients with unusual clinical responses to radiation. Radiology 121, 479–82 (1976).

    CAS  PubMed  Google Scholar 

  15. Wahl, G. M., Linke, S. P., Paulson, T. G. & Huang, L. C. Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Surv. 29, 183–219 (1997).

    CAS  PubMed  Google Scholar 

  16. Johnson, R. D. & Jasin, M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29, 196–201 (2001).

    CAS  PubMed  Google Scholar 

  17. Maity, A., McKenna, W. G. & Muschel, R. J. The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother. Oncol. 31, 1–13 (1994).

    CAS  PubMed  Google Scholar 

  18. Ward, J. F. Biochemistry of DNA lesions. Radiat. Res. Suppl. 8, S103–S111 (1985).

    CAS  PubMed  Google Scholar 

  19. Little, J. B. Radiation carcinogenesis. Carcinogenesis 21, 397–404 (2000).

    CAS  PubMed  Google Scholar 

  20. Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).

    CAS  PubMed  Google Scholar 

  21. Clarke, A. R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    CAS  PubMed  Google Scholar 

  22. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    CAS  PubMed  Google Scholar 

  23. Stewart, Z. A. & Pietenpol, J. A. p53 signaling and cell cycle checkpoints. Chem. Res. Toxicol. 14, 243–263 (2001).

    CAS  PubMed  Google Scholar 

  24. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    CAS  PubMed  Google Scholar 

  25. Caelles, C., Helmberg, A. & Karin, M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370, 220–223 (1994).

    CAS  PubMed  Google Scholar 

  26. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K. H. & Oren, M. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 9, 2170–2183 (1995).

    CAS  PubMed  Google Scholar 

  27. Sabbatini, P., Lin, J., Levine, A. J. & White, E. Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev. 9, 2184–2192 (1995).

    CAS  PubMed  Google Scholar 

  28. Sansome, C., Zaika, A., Marchenko, N. D. & Moll, U. M. Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett. 488, 110–115 (2001).

    CAS  PubMed  Google Scholar 

  29. Marchenko, N. D., Zaika, A. & Moll, U. M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212 (2000).

    CAS  PubMed  Google Scholar 

  30. Rich, T., Allen, R. L. & Wyllie, A. H. Defying death after DNA damage. Nature 407, 777–783. (2000).

    CAS  PubMed  Google Scholar 

  31. Shen, Y. & White, E. p53-dependent apoptosis pathways. Adv. Cancer Res. 82, 55–84 (2001).

    CAS  PubMed  Google Scholar 

  32. Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    CAS  PubMed  Google Scholar 

  33. Attardi, L. D. et al. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14, 704–718 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakano, K. & Vousden, K. H. PUMA, a Novel Proapoptotic Gene, Is Induced by p53. Mol. Cell 7, 683–694 (2001).

    CAS  PubMed  Google Scholar 

  35. Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 (2001).

    CAS  PubMed  Google Scholar 

  36. Moroni, M. C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).

    CAS  PubMed  Google Scholar 

  37. Jimenez, G. S. et al. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Nature Genet. 26, 37–43 (2000).

    CAS  PubMed  Google Scholar 

  38. Chao, C. et al. p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J. 19, 4967–4975 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    CAS  PubMed  Google Scholar 

  40. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    CAS  PubMed  Google Scholar 

  41. Hermeking, H. et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1, 3–11 (1997).

    CAS  PubMed  Google Scholar 

  42. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. & Vogelstein, B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620 (1999).

    CAS  PubMed  Google Scholar 

  43. Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981–993 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Murphy, M. et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 13, 2490–2501 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, J., Ahn, J., Wilson, S. H. & Prives, C. A role for p53 in base excision repair. EMBO J. 20, 914–923 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Offer, H. et al. Structural and functional involvement of p53 in BER in vitro and in vivo. Oncogene 20, 581–589 (2001).

    CAS  PubMed  Google Scholar 

  47. Prives, C. & Hall, P. A. The p53 pathway. J. Pathol. 187, 112–126 (1999).

    CAS  PubMed  Google Scholar 

  48. Ljungman, M. Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia 2, 208–225 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Oren, M. Regulation of the p53 tumor suppressor protein. J. Biol. Chem. 274, 36031–36034 (1999).

    CAS  PubMed  Google Scholar 

  50. Jimenez, G. S., Khan, S. H., Stommel, J. M. & Wahl, G. M. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Oncogene 18, 7656–7665 (1999).

    CAS  PubMed  Google Scholar 

  51. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    CAS  PubMed  Google Scholar 

  52. Espinosa, J. M. & Emerson, B. M. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol. Cell 8, 57–69 (2001).

    CAS  PubMed  Google Scholar 

  53. McLure, K. G. & Lee, P. W. How p53 binds DNA as a tetramer. EMBO J. 17, 3342–3350 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Friedman, P. N., Chen, X., Bargonetti, J. & Prives, C. The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc. Natl Acad. Sci. USA 90, 3319–3323 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672. (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Geyer, R. K., Yu, Z. K. & Maki, C. G. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nature Cell Biol. 2, 569–573 (2000).

    CAS  PubMed  Google Scholar 

  57. Boyd, S. D., Tsai, K. Y. & Jacks, T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nature Cell Biol. 2, 563–568 (2000).

    CAS  PubMed  Google Scholar 

  58. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    CAS  PubMed  Google Scholar 

  59. Honda, R. & Yasuda, H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19, 1473–1476 (2000).

    CAS  PubMed  Google Scholar 

  60. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).

    CAS  PubMed  Google Scholar 

  61. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    CAS  PubMed  Google Scholar 

  62. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2 Nature 387, 299–303 (1997).

    CAS  PubMed  Google Scholar 

  63. Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    Google Scholar 

  64. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    CAS  PubMed  Google Scholar 

  65. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    CAS  PubMed  Google Scholar 

  66. Oliner, J. D. et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857–860 (1993).

    CAS  PubMed  Google Scholar 

  67. Momand, J., Zambetti, G. P., Olson, D. C., George, D. & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245 (1992).

    CAS  PubMed  Google Scholar 

  68. Chen, J., Marechal, V. & Levine, A. J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13, 4107–4114 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fuchs, S. Y. et al. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev. 12, 2658–2663 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kubbutat, M. H. & Vousden, K. H. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol. Cell. Biol. 17, 460–468 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Maki, C. G. Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2. J. Biol. Chem. 274, 16531–16535 (1999).

    CAS  PubMed  Google Scholar 

  72. Zauberman, A., Barak, Y., Ragimov, N., Levy, N. & Oren, M. Sequence-specific DNA binding by p53: identification of target sites and lack of binding to p53 - MDM2 complexes. EMBO J. 12, 2799–2808 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodriguez, M. S., Desterro, J. M., Lain, S., Lane, D. P. & Hay, R. T. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome- mediated degradation. Mol. Cell. Biol. 20, 8458–8467 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Nakamura, S., Roth, J. A. & Mukhopadhyay, T. Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol. Cell. Biol. 20, 9391–9398 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu, Q., Yao, J., Wani, G., Wani, M. A. & Wani, A. A. Mdm2 mutant defective in binding p300 promotes ubiquitination but not degradation of p53: evidence for the role of p300 in integrating ubiquitination and proteolysis. J. Biol. Chem. 276, 29695–29701 (2001).

    CAS  PubMed  Google Scholar 

  76. Vassilev, A. et al. The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily. Mol. Cell 2, 869–875 (1998).

    CAS  PubMed  Google Scholar 

  77. Liu, L. et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. 19, 1202–1209 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gu, W., Shi, X. L. & Roeder, R. G. Synergistic activation of transcription by CBP and p53. Nature 387, 819–823 (1997).

    CAS  PubMed  Google Scholar 

  79. Lai, Z. et al. Human mdm2 Mediates Multiple Mono-ubiquitination of p53 by a Mechanism Requiring Enzyme Isomerization. J. Biol. Chem. 276, 31357–31367 (2001).

    CAS  PubMed  Google Scholar 

  80. Gu, J., Chen, D., Rosenblum, J., Rubin, R. M. & Yuan, Z. M. Identification of a sequence element from p53 that signals for Mdm2- targeted degradation. Mol. Cell. Biol. 20, 1243–1253 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zilfou, J. T., Hoffman, W. H., Sank, M., George, D. L. & Murphy, M. The Corepressor mSin3a Interacts with the Proline-Rich Domain of p53 and Protects p53 from Proteasome-Mediated Degradation. Mol. Cell. Biol. 21, 3974–3985 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Argentini, M., Barboule, N. & Wasylyk, B. The contribution of the acidic domain of MDM2 to p53 and MDM2 stability. Oncogene 20, 1267–1275 (2001).

    CAS  PubMed  Google Scholar 

  83. Parant, J. et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature Genet. 29, 92–95 (2001).

    CAS  PubMed  Google Scholar 

  84. Grossman, S. R. et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2, 405–415 (1998).

    CAS  PubMed  Google Scholar 

  85. Crook, T., Nicholls, J. M., Brooks, L., O'Nions, J. & Allday, M. J. High level expression of deltaN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene 19, 3439–3444 (2000).

    CAS  PubMed  Google Scholar 

  86. De Laurenzi, V. & Melino, G. Evolution of functions within the p53/p63/p73 family. Ann. NY Acad. Sci. 926, 90–100 (2000).

    CAS  PubMed  Google Scholar 

  87. Lohrum, M. A. & Vousden, K. H. Regulation and activation of p53 and its family members. Cell Death Differ. 6, 1162–1168 (1999).

    CAS  PubMed  Google Scholar 

  88. Maya, R. et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 15, 1067–1077 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).

    CAS  PubMed  Google Scholar 

  90. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).

    CAS  PubMed  Google Scholar 

  91. Llanos, S., Clark, P. A., Rowe, J. & Peters, G. Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nature Cell Biol. 3, 445–452 (2001).

    CAS  PubMed  Google Scholar 

  92. Honda, R. & Yasuda, H. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18, 22–27 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kamsler, A. et al. Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice. Cancer Res. 61, 1849–1854 (2001).

    CAS  PubMed  Google Scholar 

  94. Rotman, G. & Shiloh, Y. Ataxia-telangiectasia: is ATM a sensor of oxidative damage and stress? Bioessays 19, 911–917 (1997).

    CAS  PubMed  Google Scholar 

  95. Kamijo, T. et al. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res. 59, 2464–2469 (1999).

    CAS  PubMed  Google Scholar 

  96. Gatei, M. et al. Ataxia-telangiectasia: chronic activation of damage-responsive functions is reduced by alpha-lipoic acid. Oncogene 20, 289–294 (2001).

    CAS  PubMed  Google Scholar 

  97. Khan, S. H., Moritsugu, J. & Wahl, G. M. Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion. Proc. Natl Acad. Sci. USA 97, 3266–3271 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    CAS  PubMed  Google Scholar 

  99. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    CAS  PubMed  Google Scholar 

  100. Artandi, S. E. & DePinho, R. A. A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr. Opin. Genet. Dev. 10, 39–46 (2000).

    CAS  PubMed  Google Scholar 

  101. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    CAS  PubMed  Google Scholar 

  102. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).

    CAS  PubMed  Google Scholar 

  103. Shiloh, Y. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev. 11, 71–77 (2001).

    CAS  PubMed  Google Scholar 

  104. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998).

    CAS  PubMed  Google Scholar 

  105. Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677 (1998).

    CAS  PubMed  Google Scholar 

  106. Lees-Miller, S. P., Sakaguchi, K., Ullrich, S. J., Appella, E. & Anderson, C. W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol. 12, 5041–5049. (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lambert, P. F., Kashanchi, F., Radonovich, M. F., Shiekhattar, R. & Brady, J. N. Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem. 273, 33048–33053 (1998).

    CAS  PubMed  Google Scholar 

  109. Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997).

    CAS  PubMed  Google Scholar 

  110. Chao, C., Saito, S., Anderson, C. W., Appella, E. & Xu, Y. Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc. Natl Acad. Sci. USA 97, 11936–11941 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl Acad. Sci. USA 97, 10389–10394 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

    CAS  PubMed  Google Scholar 

  114. Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14, 278–288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Unger, T. et al. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J. 18, 1805–1814 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Chehab, N. H., Malikzay, A., Stavridi, E. S. & Halazonetis, T. D. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 13777–13782 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bell, D. W. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531 (1999).

    CAS  PubMed  Google Scholar 

  118. Ashcroft, M., Kubbutat, M. H. & Vousden, K. H. Regulation of p53 function and stability by phosphorylation. Mol. Cell. Biol. 19, 1751–1758 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Waterman, M. J., Stavridi, E. S., Waterman, J. L. & Halazonetis, T. D. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nature Genet. 19, 175–178 (1998).

    CAS  PubMed  Google Scholar 

  120. Lin, W. C., Lin, F. T. & Nevins, J. R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15, 1833–1844 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).

    CAS  PubMed  Google Scholar 

  122. Dimri, G. P., Itahana, K., Acosta, M. & Campisi, J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol. Cell. Biol. 20, 273–285 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhu, J. W., DeRyckere, D., Li, F. X., Wan, Y. Y. & DeGregori, J. A role for E2F1 in the induction of ARF, p53, and apoptosis during thymic negative selection. Cell Growth Differ. 10, 829–838 (1999).

    CAS  PubMed  Google Scholar 

  124. Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    CAS  PubMed  Google Scholar 

  125. Lu, X. & Lane, D. P. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75, 765–778 (1993).

    CAS  PubMed  Google Scholar 

  126. Linke, S. P. et al. p53-mediated accumulation of hypophosphorylated pRb after the G1 restriction point fails to halt cell cycle progression. Oncogene 15, 337–345 (1997).

    CAS  PubMed  Google Scholar 

  127. Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).

    CAS  PubMed  Google Scholar 

  128. Suzuki, K. et al. Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiat. Res. 155, 248–253 (2001).

    CAS  PubMed  Google Scholar 

  129. Gadbois, D. M., Bradbury, E. M. & Lehnert, B. E. Control of radiation-induced G1 arrest by cell-substratum interactions. Cancer Res. 57, 1151–1156 (1997).

    CAS  PubMed  Google Scholar 

  130. DeSimone, J. N., Dolezalova, H., Redpath, J. L. & Stanbridge, E. J. Prolonged cell cycle arrest in irradiated human diploid skin fibroblasts: the role of nutrient deprivation. Radiat. Res. 153, 131–143 (2000).

    CAS  PubMed  Google Scholar 

  131. Fenton, M., Barker, S., Kurz, D. J. & Erusalimsky, J. D. Cellular senescence after single and repeated balloon catheter denudations of rabbit carotid arteries. Arterioscler. Thromb. Vasc. Biol. 21, 220–226 (2001).

    CAS  PubMed  Google Scholar 

  132. Haks, M. C., Krimpenfort, P., van den Brakel, J. H. & Kruisbeek, A. M. Pre-TCR signaling and inactivation of p53 induces crucial cell survival pathways in pre-T cells. Immunity 11, 91–101 (1999).

    CAS  PubMed  Google Scholar 

  133. Guidos, C. J. et al. V(D)J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dev. 10, 2038–2054 (1996).

    CAS  PubMed  Google Scholar 

  134. Vousden, K. H. p53: death star. Cell 103, 691–694 (2000).

    CAS  PubMed  Google Scholar 

  135. Szak, S. T., Mays, D. & Pietenpol, J. A. Kinetics of p53 Binding to Promoter Sites in vivo. Mol. Cell. Biol. 21, 3375–3386 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, Y. & Prives, C. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376, 88–91 (1995).

    CAS  PubMed  Google Scholar 

  137. Kobayashi, T. et al. Differential p53 phosphorylation and activation of apoptosis-promoting genes Bax and Fas/APO-1 by irradiation and ara-C treatment. Cell Death Differ. 5, 584–591 (1998).

    CAS  PubMed  Google Scholar 

  138. Ollmann, M. et al. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101, 91–101 (2000).

    CAS  PubMed  Google Scholar 

  139. Brodsky, M. H. et al. Drosophila p53 binds a damage response element at the reaper locus. Cell 101, 103–113 (2000).

    CAS  PubMed  Google Scholar 

  140. Jin, S. et al. Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 7301–7306 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Brodsky, M. H., Sekelsky, J. J., Tsang, G., Hawley, R. S. & Rubin, G. M. mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development. Genes Dev. 14, 666–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Nordstrom, W. & Abrams, J. M. Guardian ancestry: fly p53 and damage-inducible apoptosis. Cell Death Differ. 7, 1035–1038 (2000).

    CAS  PubMed  Google Scholar 

  143. Lev Bar-Or, R. et al. Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc. Natl Acad. Sci. USA. 97, 11250–11255 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Alarcon, R., Koumenis, C., Geyer, R. K., Maki, C. G. & Giaccia, A. J. Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation. Cancer Res. 59, 6046–6051 (1999).

    CAS  PubMed  Google Scholar 

  145. Koumenis, C. et al. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol. Cell. Biol. 21, 1297–1310 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Graeber, T. G. et al. Hypoxia induces accumulation of p53 protein, but activation of a G1- phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol. 14, 6264–6277 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Moulder, J. E. & Rockwell, S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev. 5, 313–341 (1987).

    CAS  PubMed  Google Scholar 

  148. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    CAS  PubMed  Google Scholar 

  149. de Stanchina, E. et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12, 2434–2442 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    CAS  PubMed  Google Scholar 

  151. Hermeking, H. & Eick, D. Mediation of c-Myc-induced apoptosis by p53. Science 265, 2091–2093 (1994).

    CAS  PubMed  Google Scholar 

  152. Denko, N. C., Giaccia, A. J., Stringer, J. R. & Stambrook, P. J. The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc. Natl Acad. Sci. USA 91, 5124–5128 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Felsher, D. W. & Bishop, J. M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Fukasawa, K. & Vande Woude, G. F. Synergy between the Mos/mitogen-activated protein kinase pathway and loss of p53 function in transformation and chromosome instability. Mol. Cell. Biol. 17, 506–518 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Mai, S. Overexpression of c-myc precedes amplification of the gene encoding dihydrofolate reductase. Gene 148, 253–260 (1994).

    CAS  PubMed  Google Scholar 

  156. Craig, A. L., Blaydes, J. P., Burch, L. R., Thompson, A. M. & Hupp, T. R. Dephosphorylation of p53 at Ser20 after cellular exposure to low levels of non-ionizing radiation. Oncogene 18, 6305–6312 (1999).

    CAS  PubMed  Google Scholar 

  157. Raveh, T., Droguett, G., Horwitz, M. S., DePinho, R. A. & Kimchi, A. DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nature Cell Biol. 3, 1–7 (2001).

    CAS  PubMed  Google Scholar 

  158. Finkel, T. Redox-dependent signal transduction. FEBS Lett. 476, 52–54 (2000).

    CAS  PubMed  Google Scholar 

  159. Ries, S. et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321–330 (2000).

    CAS  PubMed  Google Scholar 

  160. Weitzman, J. B., Fiette, L., Matsuo, K. & Yaniv, M. JunD protects cells from p53-dependent senescence and apoptosis. Mol. Cell 6, 1109–1119 (2000).

    CAS  PubMed  Google Scholar 

  161. Rothstein, R., Michel, B. & Gangloff, S. Replication fork pausing and recombination or “gimme a break”. Genes Dev. 14, 1–10 (2000).

    CAS  PubMed  Google Scholar 

  162. Buschmann, T. et al. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol. Cell. Biol. 21, 2743–2754 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to our many colleagues whose seminal work was not referenced owing to space constraints. We thank our colleagues M. Hubanks, P. Jeggo, M. Oren, M. Wade, J. Stommel, and F. Toledo for many helpful suggestions regarding the manuscript. G.M.W. was funded by grants from the National Cancer Institute, Cancer Research Program (California), Bosch Foundation and National Institutes of Health. A.M.C. was funded by grants from the Medical Research Council and the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahl, G., Carr, A. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 3, E277–E286 (2001). https://doi.org/10.1038/ncb1201-e277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1201-e277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing