Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1

Abstract

LATS (large tumour suppressor) is a family of conserved tumour suppressors identified in Drosophila and mammals. Here we show that human LATS1 binds to LIMK1 in vitro and in vivo and colocalizes with LIMK1 at the actomyosin contractile ring during cytokinesis. LATS1 inhibits both the phosphorylation of cofilin by LIMK1 and LIMK1-induced cytokinesis defects. Inactivation of LATS1 by antibody microinjection or RNA-mediated interference in cells, or gene knockout in mice, abrogates cytokinesis and increases the percentage of multinucleate cells. Our findings indicate that LATS1 is a novel cytoskeleton regulator that affects cytokinesis by regulating actin polymerization through negative modulation of LIMK1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction between LATS1 and LIMK1 in vivo.
Figure 2: Interaction between LATS1 and LIMK1 in vitro.
Figure 3: Localization of LATS1 and LIMK1 during the cell cycle.
Figure 4: Colocalization of LATS1 and F-actin during mitosis and cytokinesis in HeLa cells.
Figure 5: LATS1 inhibits LIMK1 kinase activity in vitro and in vivo.
Figure 6: Effects of LATS1 and LIMK1 on cytokinesis.
Figure 7: Time-lapse video microscopy analysis of the effect of LATS1, LIMK1 and cofilin on cytokinesis.

Similar content being viewed by others

References

  1. Xu, T., Wang, W., Zhang, S., Stewart, R.A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

    CAS  PubMed  Google Scholar 

  2. Justice, R.W., Zilian, O., Woods, D.F., Noll, M. & Bryant, P.J. The Drosophila tumor suppressor gene Warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9, 534–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Johnston, L.H., Eberly, S.L., Chapman, J.W., Araki, H. & Sugino, A. The product of the Saccharomyces cerevisiae cell cycle gene DBF2 has homology with protein kinase and is periodically expressed in the cell cycle. Mol. Cell. Biol. 10, 1358–1366 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sparks, C.A., Morphew, M. & McCollum, D. Sid2p, a spindle pole body kinase that regulates the onset of cytokinesis. J. Cell Biol. 146, 777–790 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verde, F., Wiley, D.J. & Nurse, P. Fission yeast orb6, a ser/thr protein kinase related to mammalian rho kinase and myotonic dystrophy kinase, is required for maintenance of cell polarity and coordinates cell morphogenesis with the cell cycle. Proc. Natl Acad. Sci. USA 95, 7526–7531 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geng, W., He, B., Wang, M. & Adler, P.N. The tricornered gene, which is required for the integrity of epidermal cell extension, encodes the Drosophila nuclear DBF2-related kinase. Genetics 156, 1817–1828 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zellen, J.A., Peckol, E.L., Tobin, D.M. & Bargmann, C.I. Neuronal cell shape and neurite initiation are regulated by the Ndr kinase SAX-1, a member of the Orb6/COT1/Warts serine/threonine kinase family. Mol. Biol. Cell 11, 3177–3190 (2000).

    Article  Google Scholar 

  8. Bidlingmaier, S., Weiss, E.L., Seidel, C., Drubin, D.G. & Snyder, M. The Cbk1p pathway is important for polarized cell growth and cell separation in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 2449–2462 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tao, W. et al. Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nature Genet. 21, 177–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. St John, M.A. et al. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nature Genet. 21, 182–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Yabuta, N. et al. Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Genomics 63, 263–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, X., Li, D.M., Chen, W. & Xu, T. Human homologue of Drosophila lats, LATS1, negatively regulates growth by inducing G2/M arrest or apoptosis. Oncogene 20, 6516–6523 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Hisaoka, M., Tanaka, A. & Hashimoto, H. Molecular alterations of h-warts/LATS1 tumor suppressor in human soft tissue sarcoma. Lab Invest. 82, 1427–1435 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Xia, H. et al. LATS1 tumor suppressor regulates G2/M transition and apoptosis. Oncogene 21, 1233–1241 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Field, C., Li, R. & Oegema, K. Cytokinesis in eukaryotes: a mechanistic comparison. Curr. Opin. Cell Biol. 11, 68–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Robinson, D.N. & Spudich, J.A. Towards a molecular understanding of cytokinesis. Trends Cell Biol. 10, 228–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Glotzer, M. Animal cell cytokinesis. Annu. Rev. Cell Dev. Biol. 17, 351–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Pelham, R.J. & Chang, F. Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature 419, 82–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Mizuno, K. et al. Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene 9, 1605–1612 (1994).

    CAS  PubMed  Google Scholar 

  20. Prokopenko, S.N., Saint, R. & Bellen, H.J. Untying the Gordian knot of cytokinesis: role of small G proteins and their regulators. J. Cell Biol. 148, 843–848 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ridley, A.J. Rho family proteins: coordinating cell responses. Trends Cell Biol. 12, 471–477 (2001).

    Article  Google Scholar 

  22. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Edwards, D.C., Sanders, L.C., Bokoch, G.M. & Gill, G.N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signaling to actin cytoskeletal dynamics. Nature Cell Biol. 1, 253–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Mizuno, K. et al. Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene 9, 1605–1612 (1994).

    CAS  PubMed  Google Scholar 

  26. Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805–809 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, N. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Stanyon, C.A. & Bernard, O. LIM-kinase 1. Int. J. Biochem. Cell Biol. 31, 389–394 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Bamburg, J.R. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev. Cell Biol. 15, 185–230 (1999).

    Article  CAS  Google Scholar 

  30. Stewart, R., Li, D.-M., Huang, H. & Xu, T. A genetic screen for modifier of the lats tumor suppressor gene identifies C-terminal Src kinase as a regulator of cell proliferation in Drosophila. Oncogene 22, 6436–6444 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Hirota, T. et al. Zyxin, a regulator of actin filament assembly, targets the mitotic apparatus by interacting with h-warts/LATS1 tumor suppressor. J. Cell Biol. 149, 1073–1086 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoshioka, K., Foletta, V., Bernard, O. & Itoh, K. A role for LIM kinase in cancer invasion. Proc. Natl Acad. Sci. USA 100, 7247–7252 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amano, T., Kaji, N., Ohashi, K. & Mizuno, K. Mitosis-specific activation of LIM motif-containing protein kinase and roles of cofilin phosphorylation and dephosphorylation in mitosis. J. Biol. Chem. 277, 22093–22102 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Condeelis, J. How is actin polymerization nucleated in vivo? Trends Cell Biol. 11, 288–293 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Frenz, L.M., Lee, S.E., Fesquet, D. & Johnston L.H. The budding yeast Dbf2 protein kinase localizes to the centrosome and moves to the bud neck in late mitosis. J. Cell Sci. 113, 3399–3408 (2000).

    CAS  PubMed  Google Scholar 

  36. Kinoshita, M. et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 11, 1535–1547 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Madaule, P. et al. Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394, 491–494 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Terada, Y. et al. AIM-1: a mammalian midbody-associated protein required for cytokinesis. EMBO J. 17, 667–676 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tatsumoto, T., Xie, X., Blumenthal, R., Okamoto, I. & Miki, T. Human ECT2 is an exchange factor for Rho GTPase, phosphorylated in G2/M phases, and involved in cytokinesis. J. Cell Biol. 147, 921–927 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kosako, H. et al. Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 19, 6059–6064 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Oegema, K. et al. Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J. Cell Biol. 150, 539–552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Di Cunto, F. et al. Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron 28, 115–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Tarapore, P. & Fukasawa, K. Loss of p53 and centrosome hyperamplification. Oncogene 21, 6234–6240 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Ross, J.S. DNA ploidy and cell cycle analysis in cancer diagnosis and prognosis. Oncology (Huntington) 10, 867–882 (1996).

    CAS  Google Scholar 

  45. Pihan, G.A. & Doxsey, S.J. The mitotic machinery as a source of genetic instability in cancer. Semin. Cancer Biol. 9, 289–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Fukasawa, K. & Vande Woude, G.F. Synergy between the Mos/mitogen-activated protein kinase pathway and loss of p53 function in transformation and chromosome instability. Mol. Cell. Biol. 17, 506–518 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schuebel, K.E., Movilla, N., Rosa, J.L. & Bustelo, X.R. Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J. 17, 6608–6621 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tatsuka, M. et al. Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res. 58, 4811–4816 (1998).

    CAS  PubMed  Google Scholar 

  49. Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Pollard, L. Cooley, A. Pater, R. Pagliarini, L. Pedraza and members of the Xu laboratory for critical reading of the manuscript, suggestions and discussion; X. Fei and K. Sepanek for assistance; and O. Bernard, A. Minden and C. Dan for LIMK1 plasmids. This work was supported by a grant from the National Institutes of Health (CA69408) to T.X., who is a Howard Hughes Medical Institute Associate Investigator. Y.X. is a recipient of a postdoctoral fellowship from the Canadian Institute of Health Research (CIHR) and is an Anne Fuller Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Fig. S1, Fig. S2, Fig. S3 and Fig. S4 (PDF 1031 kb)

Supplementary Information, Table S1 (DOC 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Yu, K., Hao, Y. et al. LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1. Nat Cell Biol 6, 609–617 (2004). https://doi.org/10.1038/ncb1140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing