Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus

Abstract

Vaccinia virus, a close relative of the causative agent of smallpox, exploits actin polymerization to enhance its cell-to-cell spread. We show that actin-based motility of vaccinia is initiated only at the plasma membrane and remains associated with it. There must therefore be another form of cytoplasmic viral transport, from the cell centre, where the virus replicates, to the periphery. Video analysis reveals that GFP-labelled intracellular enveloped virus particles (IEVs) move from their perinuclear site of assembly to the plasma membrane on microtubules. We show that the viral membrane protein A36R, which is essential for actin-based motility of vaccinia, is also involved in microtubule-mediated movement of IEVs. We further show that conventional kinesin is recruited to IEVs via the light chain TPR repeats and is required for microtubule-based motility of the virus. Vaccinia thus sequentially exploits the microtubule and actin cytoskeletons to enhance its cell-to-cell spread.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Vaccinia actin tails are induced at and remain associated with the plasma membrane.
Figure 2: Actin tails are formed beneath extracellular CEVs.
Figure 3: Vaccinia virus exhibits both processive and saltatory movements.
Figure 4: IEVs move on microtubules.
Figure 5: A36R is required for microtubule-based motility of IEVs to the cell periphery.
Figure 6: Residues 71–100 of A36R are required for IEV dispersion to the cell periphery.
Figure 7: Conventional kinesin is recruited to intracellular IEVs.
Figure 8: Conventional kinesin is required for IEV motility to the cell periphery.

References

  1. 1

    Sodeik, B., Ebersold, M. W. & Helenius, A. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J. Cell Biol. 136, 1007–1021 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Suomalainen, M. et al. Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J. Cell Biol. 144, 657–672 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Leopold, P. L. et al. Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis. Hum. Gene Ther. 11, 151–156 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Ploubidou, A. et al. Vaccinia virus infection disrupts microtubule organization and centrosome function. EMBO J. 19, 3932–3944 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Holland, D. J., Miranda-Saksena, M., Boadle, R. A., Armati, P. & Cunningham, A. L. Anterograde transport of herpes simplex virus proteins in axons of peripheral human fetal neurons: an immunoelectron microscopy study. J. Virol. 73, 8503–8511 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Miranda-Saksena, M., Armati, P., Boadle, R. A., Holland, D. J. & Cunningham, A. L. Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons. J. Virol. 74, 1827–1839 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Sodeik, B. Mechanisms of viral transport in the cytoplasm. Trends Microbiol. 8, 465–472 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Ploubidou, A. & Way, M. Viral transport and the cytoskeleton. Curr. Opin. Cell Biol. 13, 97–105 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Frischknecht, F. & Way, M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol. 11, 30–38 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Tolonen, N., Doglio, L., Schleich, S. & Locker, J. K. Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Mol. Biol. Cell 12, 2031–2046 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Sodeik, B. et al. Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J. Cell Biol. 121, 521–541 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Schmelz, M. et al. Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J. Virol. 68, 130–147 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Blasco, R. & Moss, B. Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein. J. Virol. 65, 5910–5920 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Blasco, R. & Moss, B. Role of cell-associated enveloped vaccinia virus in cell-to-cell spread. J. Virol. 66, 4170–4179 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Cudmore, S., Reckmann, I., Griffiths, G. & Way, M. Vaccinia virus: a model system for actin–membrane interactions. J. Cell Sci. 109, 1739–1747 (1996).

    CAS  PubMed  Google Scholar 

  17. 17

    Wolffe, E. J., Katz, E., Weisberg, A. & Moss, B. The A34R glycoprotein gene is required for induction of specialized actin-containing microvilli and efficient cell-to-cell transmission of vaccinia virus. J. Virol. 71, 3904–3915 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Wolffe, E. J., Weisberg, A. S. & Moss, B. Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. Virology 25, 20–26 (1998).

    Article  Google Scholar 

  19. 19

    Sanderson, C. M., Frischknecht, F., Way, M., Hollinshead, M. & Smith, G. L. Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell–cell fusion. J. Gen. Virol. 79, 1415–1425 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol. 2, 441–448 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Hirt, P., Hiller, G. & Wittek, R. Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J. Virol. 58, 757–764 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Hollinshead, M. et al. Vaccinia virus utilizes microtubules for movement to the cell surface. J. Cell Biol. 154, 389–402 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Röttger, S., Frischknecht, F., Reckmann, I., Smith, G. L. & Way, M. Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J. Virol. 73, 2863–2875 (1999).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Rahman, A., Friedman, D. S. & Goldstein, L. S. Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins. J. Biol. Chem. 273, 15395–15403 (1998).

    CAS  Article  Google Scholar 

  26. 26

    van Eijl, H., Hollinshead, M. & Smith, G. L. The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. Virology 271, 26–36 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Wolffe, E. J., Weisberg, A. S. & Moss, B. The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein. J. Virol. 75, 303–310 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Ward, B. M. & Moss, B. Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein–B5R membrane protein chimera. J. Virol. 75, 4802–4813 (2001).

    CAS  Article  Google Scholar 

  29. 29

    Blasco, R., Sisler, J., R. & Moss, B. Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. J. Virol. 67, 3319–3325 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    McIntosh, A. A. & Smith, G. L. Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. J. Virol. 70, 272–281 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Mathew, E., Sanderson, C. M., Hollinshead, M. & Smith, G. L. The extracellular domain of vaccinia virus protein B5R affects plaque phenotype, extracellular enveloped virus release, and intracellular actin tail formation. J. Virol. 72, 2439–2438 (1998).

    Google Scholar 

  32. 32

    Herrera, E., del Mar Lorenzo, M., Blasco, R. & Isaacs, S. N. Functional analysis of vaccinia virus B5R protein: essential role in virus envelopment is independent of a large portion of the extracellular domain. J. Virol. 72, 294–302 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Goosney, D. L., Gruenheid, S. & Finlay, B. B. Gut feelings: enteropathogenic E. coli (EPEC) interactions with the host. Annu. Rev. Cell Dev. Biol. 16, 173–189 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Vallance, B. A. & Finlay, B. B. Exploitation of host cells by enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 8799–8806 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Kenny, B. Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol. Microbiol. 31, 1229–1241 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Frankel, G. et al. Intimin and the host cell—is it bound to end in Tir(s)? Trends Microbiol. 9, 214–218 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389–391 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Goosney, D. L., DeVinney, R. & Finlay, B. B. Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun. 69, 3315–3322 (2001).

    CAS  Article  Google Scholar 

  39. 39

    Sanger, J. M., Chang, R., Ashton, F., Kaper, J. B. & Sanger, J. W. Novel form of actin-based motility transports bacteria on the surfaces of infected cells. Cell Motil. Cytoskeleton 34, 279–287 (1996).

    CAS  Article  Google Scholar 

  40. 40

    Forscher, P., Lin, C. H. & Thompson, C. Novel form of growth cone motility involving site-directed actin filament assembly. Nature 357, 515–518 (1992).

    CAS  Article  Google Scholar 

  41. 41

    Gross, B. S. et al. Regulation and function of WASp in platelets by the collagen receptor, glycoprotein VI. Blood 94, 4166–4176. (1999).

    CAS  PubMed  Google Scholar 

  42. 42

    Baba, Y. et al. Involvement of Wiskott–Aldrich syndrome protein in B-cell cytoplasmic tyrosine kinase pathway. Blood 93, 2003–2012. (1999).

    CAS  PubMed  Google Scholar 

  43. 43

    Guinamard, R., Aspenstrom, P., Fougereau, M., Chavrier, P. & Guillemot, J. C. Tyrosine phosphorylation of the Wiskott–Aldrich syndrome protein by Lyn and Btk is regulated by CDC42. FEBS Lett. 434, 431–436 (1998).

    CAS  Article  Google Scholar 

  44. 44

    Sheetz, M. P. Motor and cargo interactions. Eur. J. Biochem. 262, 19–25 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Toomre, D., Keller, P., White, J., Olivo, J. C. & Simons, K. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci. 112, 21–33 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    White, J. et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol. 147, 743–760. (1999).

    CAS  Article  Google Scholar 

  47. 47

    Vale, R. D. Kinesin, Conventional (eds Kreis, T. & Vale, R.) 398–402 (Oxford University Press, 1999).

    Google Scholar 

  48. 48

    Penfold, M. E., Armati, P. & Cunningham, A. L. Axonal transport of herpes simplex virions to epidermal cells: evidence for a specialized mode of virus transport and assembly. Proc. Natl. Acad. Sci. USA 91, 6529–6533 (1994).

    CAS  Article  Google Scholar 

  49. 49

    Rogers, S. L. & Gelfand, V. I. Membrane trafficking, organelle transport, and the cytoskeleton. Curr. Opin. Cell Biol. 12, 57–62 (2000).

    CAS  Article  Google Scholar 

  50. 50

    Kamal, A. & Goldstein, L. S. Connecting vesicle transport to the cytoskeleton. Curr. Opin. Cell Biol. 12, 503–508 (2000).

    CAS  Article  Google Scholar 

  51. 51

    Sanderson, C. M., Way, M. & Smith, G. L. Virus-induced cell motility. J. Virol. 72, 1235–1243 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Tsutsui, K. Release of vaccinia virus from FL cells infected with IHD-W strain. J. Electron Microsc. 32, 125–140 (1983).

    CAS  Google Scholar 

  53. 53

    Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H. & Goldstein, L. S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459 (2000).

    CAS  Article  Google Scholar 

  54. 54

    Bowman, A. B. et al. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583–594 (2000).

    CAS  Article  Google Scholar 

  55. 55

    Ong, L. L., Lim, A. P., Er, C. P., Kuznetsov, S. A. & Yu, H. Kinectin-kinesin binding domains and their effects on organelle motility. J. Biol. Chem. 275, 32854–32860 (2000).

    CAS  Article  Google Scholar 

  56. 56

    Verhey, K. J. et al. Cargo of kinesin identified as jip scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959–970 (2001).

    CAS  Article  Google Scholar 

  57. 57

    Hollenbeck, P. J. Phosphorylation of neuronal kinesin heavy and light chains in vivo. J. Neurochem. 60, 2265–2275 (1993).

    CAS  Article  Google Scholar 

  58. 58

    Matthies, H. J., Miller, R. J. & Palfrey, H. C. Calmodulin binding to and cAMP-dependent phosphorylation of kinesin light chains modulate kinesin ATPase activity. J. Biol. Chem. 268, 11176–11187 (1993).

    CAS  PubMed  Google Scholar 

  59. 59

    Lee, K. D. & Hollenbeck, P. J. Phosphorylation of kinesin in vivo correlates with organelle association and neurite outgrowth. J. Biol. Chem. 270, 5600–5605 (1995).

    CAS  Article  Google Scholar 

  60. 60

    Lindesmith, L., McIlvain, J. M. Jr, Argon, Y. & Sheetz, M. P. Phosphotransferases associated with the regulation of kinesin motor activity. J. Biol. Chem. 272, 22929–22933 (1997).

    CAS  Article  Google Scholar 

  61. 61

    Hiller, G. & Weber, K. Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment. J. Virol. 55, 651–659 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Sawin, K. E., Mitchison, T. J. & Wordeman, L. G. Evidence for kinesin-related proteins in the mitotic apparatus using peptide antibodies. J. Cell Sci. 101, 303–313 (1992).

    CAS  PubMed  Google Scholar 

  63. 63

    Parkinson, J. E. & Smith, G. L. Vaccinia virus gene A36R encodes a Mr 43–50 K protein on the surface of extracellular enveloped virus. Virology 204, 376–390 (1994).

    CAS  Article  Google Scholar 

  64. 64

    Siegert, F. & Weijer, C. J. Digital image processing of optical density wave propagation in Dictyostelium discoideum and analysis of the effects of caffeine and ammonia. J. Cell Sci. 93, 325–335 (1989).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Goldstein, G. B. Stokin and A. Kamal (UCSD, San Diego, USA) for antibodies against the heavy and light chains of conventional kinesin, as well as for the GST–KLC2 expression construct. We also thank A. Matus (Friedrich Miescher Institute, Basel, Switzerland) for providing his unpublished pBactin-mb5tubulin-EGFP expression vector and A. Desai (Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany) for the HIPYER antibody. We also thank I. Vernos, D. Brunner, F. Valderrama, E. Piddini and N. Scaplehorn for suggestions and comments concerning the manuscript. A. P. is supported by a European Commission Marie Curie Individual fellowship. A. H. is supported by Wenner-Gren Foundation (Sweden).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Way.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rietdorf, J., Ploubidou, A., Reckmann, I. et al. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat Cell Biol 3, 992–1000 (2001). https://doi.org/10.1038/ncb1101-992

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing