Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Endogenous β-amyloid production in presenilin-deficient embryonic mouse fibroblasts

Abstract

Genetic and biochemical evidence have led to the suggestion that presenilins could be the long-searched-for γ-secretase, the proteolytic activity that generates the carboxy terminus of amyloid β-peptides. This activity is also thought to be responsible for the release of the Notch intracellular domain (NICD) from Notch. Here, we report the production of endogenous secreted and intracellular 40- and 42-amino-acid Aβ peptides in mouse fibroblasts deficient in presenilin 1, presenilin 2 or both. We show that the endogenous production of Aβ40 and Aβ42 was not altered by presenilin deficiency. By contrast, inactivating presenilin genes fully abolished NICD production. These data indicate that Aβ and NICD production are distinct catabolic events. Also, even though NICD formation is indeed presenilin dependent, endogenous secreted and intracellular β-amyloid peptides are still generated in absence of presenilins, indicating that there is a γ-secretase activity distinct from presenilins, at least in murine fibroblasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NICD production in presenilin-deficient fibroblasts.
Figure 2: Intracellular and secreted production of total endogenous Aβ in presenilin-deficient fibroblasts.
Figure 3: Production of endogenous Aβ40 and Aβ42 in presenilin-deficient fibroblasts.

Similar content being viewed by others

References

  1. Checler, F. J. Neurochem. 65, 1431–1444 (1995).

    Article  CAS  Google Scholar 

  2. Burdick, D. et al. J. Biol. Chem. 267, 546–554 (1992).

    CAS  PubMed  Google Scholar 

  3. Tanzi, R. E. et al. Neurobiol. Dis. 3, 159–168 (1996).

    Article  CAS  Google Scholar 

  4. Li, Y.-M. et al. Proc. Natl. Acad. Sci. USA 97, 6138–6143 (2000).

    Article  CAS  Google Scholar 

  5. Li, Y.-M. et al. Nature 405, 689–694 (2000).

    Article  CAS  Google Scholar 

  6. Esler, W. P. et al. Nature Cell Biol. 2, 428–434 (2000).

    Article  CAS  Google Scholar 

  7. Wolfe, M. S. et al. Nature 398, 513–517 (1999).

    Article  CAS  Google Scholar 

  8. Shen, J. et al. Cell 89, 629–639 (1997).

    Article  CAS  Google Scholar 

  9. Davis, J. A. et al. Neuron 20, 603–609 (1998).

    Article  CAS  Google Scholar 

  10. Donoviel, D. B. et al. Genes Dev. 13, 2801–2810 (1999).

    Article  CAS  Google Scholar 

  11. Huppert, S. S. et al. Nature 405, 966–970 (2000).

    Article  CAS  Google Scholar 

  12. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Nature 28, 382–386 (1998).

    Article  Google Scholar 

  13. Herreman, A. et al. Nature Cell Biol. 2, 461–462 (2000).

    Article  CAS  Google Scholar 

  14. Zhang, Z. et al. Nature Cell Biol. 2, 463–465 (2000).

    Article  CAS  Google Scholar 

  15. Checler, F. J. Neurochem. 76, 1621–1627 (2001).

    Article  CAS  Google Scholar 

  16. Wolfe, M. S. J. Neurochem. 76, 1615–1620 (2001).

    Article  CAS  Google Scholar 

  17. Petit, A. et al. Nature Cell Biol. 3, 507–511 (2001).

    Article  CAS  Google Scholar 

  18. Refolo, L. M. et al. J. Neurochem. 73, 2383–2388 (1999).

    Article  CAS  Google Scholar 

  19. Barelli, H. et al. Mol. Med. 3, 695–707 (1997).

    Article  CAS  Google Scholar 

  20. Ancolio, C. et al. Proc. Natl. Acad. Sci. USA 96, 4119–4124 (1999).

    Article  CAS  Google Scholar 

  21. Chui, D. M. et al. J. Alzheimer's Dis. 3, 231–239 (2001).

    Article  CAS  Google Scholar 

  22. Gravina, S. A. et al. J. Biol. Chem. 270, 7013–7016 (1995).

    Article  CAS  Google Scholar 

  23. Herreman, A. et al. Proc. Natl. Acad. Sci. USA 96, 11872–11877 (1999).

    Article  CAS  Google Scholar 

  24. Xu, H. et al. Nature Med. 4, 447–451 (1998).

    Article  CAS  Google Scholar 

  25. Chen, F. et al. J. Biol. Chem. 275, 36794–36802 (2000).

    Article  CAS  Google Scholar 

  26. Capell, A. et al. Nature Cell Biol. 2, 205–211 (2000).

    Article  CAS  Google Scholar 

  27. L'Hernault, S. W. and Arduengo, P. M. J. Cell. Biol. 119, 55–68 (1992).

    Article  CAS  Google Scholar 

  28. De Strooper, B. et al. Nature 391, 387–390 (1998).

    Article  CAS  Google Scholar 

  29. De Strooper, B. et al. Nature 398, 518–522 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. de Strooper (Leuven, Belgium) and P. Saftig (Göttingen, Germany) for providing us with the presenilin-deficient fibroblast cell lines, and R. Kopan for providing us with the mNotchΔE and NICD cDNAs. We are indebted to T. Hartmann and K. Beyreuther for providing WO2 antibodies. We sincerely thank W. Araki and T. Tabira for the gift of anti-presenilin-1 and anti-presenilin-2 antibodies. C. A. C. is supported by a grant from Aventis Pharma. This work was supported by INSERM and by the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Checler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armogida, M., Petit, A., Vincent, B. et al. Endogenous β-amyloid production in presenilin-deficient embryonic mouse fibroblasts. Nat Cell Biol 3, 1030–1033 (2001). https://doi.org/10.1038/ncb1101-1030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-1030

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing