Abstract
Skeletal muscles adapt to changes in their workload by regulating fibre size by unknown mechanisms1,2. The roles of two signalling pathways implicated in muscle hypertrophy on the basis of findings in vitro3,4,5,6, Akt/mTOR (mammalian target of rapamycin) and calcineurin/NFAT (nuclear factor of activated T cells), were investigated in several models of skeletal muscle hypertrophy and atrophy in vivo. The Akt/mTOR pathway was upregulated during hypertrophy and downregulated during muscle atrophy. Furthermore, rapamycin, a selective blocker of mTOR7, blocked hypertrophy in all models tested, without causing atrophy in control muscles. In contrast, the calcineurin pathway was not activated during hypertrophy in vivo, and inhibitors of calcineurin, cyclosporin A and FK506 did not blunt hypertrophy. Finally, genetic activation of the Akt/mTOR pathway was sufficient to cause hypertrophy and prevent atrophy in vivo, whereas genetic blockade of this pathway blocked hypertrophy in vivo. We conclude that the activation of the Akt/mTOR pathway and its downstream targets, p70S6K and PHAS-1/4E-BP1, is requisitely involved in regulating skeletal muscle fibre size, and that activation of the Akt/mTOR pathway can oppose muscle atrophy induced by disuse.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.




References
Carson, J. A. Exercise Sport Science Rev. 25, 301–320 (1997).
Baar, K., Blough, E., Dineen, B. & Esser, K. Exercise Sport Science Rev. 27, 333–379 (1999).
Molkentin, J. D. et al. Cell 93, 215–228 (1998).
Semarian, C. et al. Nature 400, 576–581 (1999).
Musaro, A. et al. Nature 400, 581–585 (1999).
Rommel, C. et al. Nature Cell Biol. 3, 1009–1013 (2001).
Schmeizie, T. & Hall, M. N. Cell 103, 253–262 (2000).
Adams, G. R. & Haddad, G. R. J. Appl. Physiol. 81, 2509–2516 (1996).
Roy, R. R. et al. J. Appl. Physiol. 83, 280–290 (1997).
Naya, F. J. et al. J. Biol. Chem. 275, 4545–4548 (2000).
Murgia, M. et al. Nature Cell Biol. 2, 142–147 (2000).
Terada, N. et al. Proc. Natl Acad. Sci. USA 91, 11477–11481 (1994).
Brunn, G. J. et al. Science 277, 99–101 (1997).
Rhoads, R. E. J. Biol. Chem. 274, 30337–30340 (1999).
Lin, T.-A. et al. Science 266, 653–656 (1994).
Lin, T.-A. & Lawrence, J. C. Jr J. Biol. Chem. 271, 30199–30204 (1996).
Jefferson, L. S., Fabian, J. R. & Kimball, S. R. Int. J. Biochem. Cell Biol. 31, 191–200, (1999).
Welch, G. I., et al. FEBS Lett. 410, 418–422 (1997).
Tung, C. O., Rittenhouse, S. E. & Tsichlis, P. N. Annu. Rev. Biochem. 68, 965–1014 (1999).
Shah, O.J, Anthony, J. C., Kimball, S. R. & Jefferson, L. S. Am. J. Physiol. Endocrinol. Metab. 279, E715–E729 (2000).
Thomason, D. B., Herrick, R. E., Surdyka, D. & Baldwin, K. M. J. Appl. Physiol. 63, 130–137 (1987).
Eves, E. M. et al. Mol. Cell. Biol. 18, 2143–2152 (1998).
Brennan, K. J. & Hardeman, E. C. J. Biol. Chem. 268, 719–725 (1993).
Dunn, S. E., Burns, J. L. & Michel, R. N. J. Biol. Chem. 274, 21908–21912 (1999).
Dunn, S. E., Chin, E. R. & Michel, R. N. J. Cell Biol. 151, 663–672 (2000).
Musaro, A. et al. Nature Genet. 27, 195–200 (2001).
Roy, R. R., Monke, S. R., Allen, D. L. & Edgerton, V. R. J. Appl. Physiol. 87, 634–642 (1999).
Rosenblatt, J. D., Yong, D. & Parry, D. J. Muscle Nerve 17, 608–613 (1994).
Wong, T. S. & Booth F. W. J. Appl. Physiol. 69, 1718–1724 (1990).
Lowe, D. A. & Always, S. E. Cell Tiss. Res. 296, 531–539 (1999).
Baar, K. & Esser, K. Am. J. Physiol. Cell 45, C120–C127 (1999).
Montagne, J. et al. Science 285, 2126–2129 (1999).
Weinkove, D. & Leever, S. J. Curr. Opin. Genet. Dev. 10, 75–80 (2000).
Shima, H. et al. EMBO J. 17, 6649–6659 (1998).
Shioi, T. et al. EMBO J. 19, 2537–2548 (2000).
Rommel, C. et al. Science 286, 1738–1741 (1999).
Azpiazu, I, Saltiel, A. R., DePaoli-Roach, A. A. & Lawrence, J. C. Jr J. Biol. Chem. 271, 5033–5039 (1996).
Acknowledgements
We thank L. S. Schleifer and P. R. Vagelos and the rest of the Regeneron community for their support, particularly E. Burrows for graphics work and C. Rommel for insightful discussions.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Bodine, S., Stitt, T., Gonzalez, M. et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3, 1014–1019 (2001). https://doi.org/10.1038/ncb1101-1014
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ncb1101-1014
Further reading
-
Transcriptomic characterization of the molecular mechanisms induced by RGMa during skeletal muscle nuclei accretion and hypertrophy
BMC Genomics (2022)
-
Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges
npj Regenerative Medicine (2022)
-
Muscle protein synthesis and muscle/metabolic responses to resistance exercise training in South Asian and White European men
Scientific Reports (2022)
-
Co-ingestion of cluster dextrin carbohydrate does not increase exogenous protein-derived amino acid release or myofibrillar protein synthesis following a whole-body resistance exercise in moderately trained younger males: a double-blinded randomized controlled crossover trial
European Journal of Nutrition (2022)
-
NAD+ centric mechanisms and molecular determinants of skeletal muscle disease and aging
Molecular and Cellular Biochemistry (2022)