Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The apoptotic v-cyclin–CDK6 complex phosphorylates and inactivates Bcl-2

Abstract

v-cyclin encoded by Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV or HHV8) associates with cellular cyclin-dependent kinase 6 (CDK6) to form a kinase complex that promotes cell-cycle progression, but can also induce apoptosis in cells with high levels of CDK6. Here we show that whereas HHV8-encoded v-Bcl-2 protects against this apoptosis, cellular Bcl-2 has lost its anti-apoptotic potential as a result of an inactivating phosphorylation in its unstructured loop region. Moreover, we identify Bcl-2 as a new substrate for v-cyclin–CDK6 in vitro, and show that it is present in a complex with CDK6 in cell lysates. A Bcl-2 mutant with a S70A S87A double substitution in the loop region is not phosphorylated and provides resistance to apoptosis, indicating that inactivation of Bcl-2 by v-cyclin–CDK6 may be required for the observed apoptosis. Furthermore, the identification of phosphorylated Bcl-2 in HHV8-positive Kaposi's sarcoma indicates that HHV8-mediated interference with host apoptotic signalling pathways may encourage the development of Kaposi's sarcoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The inability of Bcl-2 to protect from cell death is specific to v-cyclin–CDK6-induced apoptosis.
Figure 2: Bcl-2 is phosphorylated in cells co-expressing v-cyclin and CDK6.
Figure 3: Bcl-2 phosphorylation in cells expressing v-cyclin and CDK6 is not mediated by a G2/M-activated JNK1 pathway.
Figure 4: Complex formation and direct phosphorylation of Bcl-2 by CDK6 in conjunction with v-cyclin.
Figure 5: Bcl-2 is phosphorylated by v-cyclin–CDK6 at Ser70 and Ser87 and thereby inactivated.
Figure 6: Phosphorylation of Bcl-2 in HHV8-positive BC-3 PEL cells and in a primary Kaposi's sarcoma.

Similar content being viewed by others

References

  1. Cannell, E. & Mittnacht, S. Viral encoded cyclins. Semin. Cancer Biol. 9, 221–229 (1999).

    Article  CAS  Google Scholar 

  2. Godden-Kent, D. et al. The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J. Virol. 71, 4193–4198 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, M. et al. Kaposi's sarcoma-associated herpesvirus encodes a functional cyclin. J. Virol. 71, 1984–1991 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Swanton, C. et al. Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390, 184–187 (1997).

    Article  CAS  Google Scholar 

  5. Ellis, M. et al. Degradation of p27(Kip) cdk inhibitor triggered by Kaposi's sarcoma virus cyclin-cdk6 complex. EMBO J. 18, 644–653 (1999).

    Article  CAS  Google Scholar 

  6. Mann, D. J., Child, E. S., Swanton, C., Laman, H. & Jones, N. Modulation of p27(Kip1) levels by the cyclin encoded by Kaposi's sarcoma-associated herpesvirus. EMBO J. 18, 654–663 (1999).

    Article  CAS  Google Scholar 

  7. Ojala, P. M. et al. Kaposi's sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res. 59, 4984–4989 (1999).

    CAS  PubMed  Google Scholar 

  8. Friborg, J. Jr et al. Distinct biology of Kaposi's sarcoma-associated herpesvirus from primary lesions and body cavity lymphomas. J. Virol. 72, 10073–10082 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaaya, E. et al. Proliferation and apoptosis in the evolution of endemic and acquired immunodeficiency syndrome-related Kaposi's sarcoma. Med. Oncol. (in the press).

  10. Kranenburg, O., van der Eb, A. J. & Zantema, A. Cyclin D1 is an essential mediator of apoptotic neuronal cell death. EMBO J. 15, 46–54 (1996).

    Article  CAS  Google Scholar 

  11. Sofer-Levi, Y. & Resnitzky, D. Apoptosis induced by ectopic expression of cyclin D1 but not cyclin E. Oncogene 13, 2431–2437 (1996).

    CAS  PubMed  Google Scholar 

  12. Meikrantz, W. & Schlegel, R. Suppression of apoptosis by dominant negative mutants of cyclin- dependent protein kinases. J. Biol. Chem. 271, 10205–10209 (1996).

    Article  CAS  Google Scholar 

  13. Gil-Gomez, G., Berns, A. & Brady, H. J. A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. EMBO J. 17, 7209–7218 (1998).

    Article  CAS  Google Scholar 

  14. Dobashi, Y. et al. A novel apoptotic cascade mediated by CDK4 in rat pheochromocytoma PC12 cells. Biochem. Biophys. Res. Commun. 260, 806–812 (1999).

    Article  CAS  Google Scholar 

  15. Cheng, E. H. et al. A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl Acad. Sci. USA 94, 690–694 (1997).

    Article  CAS  Google Scholar 

  16. Sarid, R., Sato, T., Bohenzky, R. A., Russo, J. J. & Chang, Y. Kaposi's sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nature Med. 3, 293–298 (1997).

    Article  CAS  Google Scholar 

  17. Gross, A., McDonnell, J. M. & Korsmeyer, S. J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).

    Article  CAS  Google Scholar 

  18. Adams, J. M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326 (1998).

    Article  CAS  Google Scholar 

  19. Haldar, S., Jena, N. & Croce, C. M. Inactivation of Bcl-2 by phosphorylation. Proc. Natl Acad. Sci. USA 92, 4507–4511 (1995).

    Article  CAS  Google Scholar 

  20. Poommipanit, P. B., Chen, B. & Oltvai, Z. N. Interleukin-3 induces the phosphorylation of a distinct fraction of bcl- 2. J. Biol. Chem. 274, 1033–1039 (1999).

    Article  CAS  Google Scholar 

  21. Reed, J. C. Bcl-2 family proteins: strategies for overcoming chemoresistance in cancer. Adv. Pharmacol. 41, 501–532 (1997).

    Article  CAS  Google Scholar 

  22. Haldar, S., Chintapalli, J. & Croce, C. M. Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 56, 1253–1255 (1996).

    CAS  PubMed  Google Scholar 

  23. Blagosklonny, M. V., Schulte, T., Nguyen, P., Trepel, J. & Neckers, L. M. Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res. 56, 1851–1854 (1996).

    CAS  PubMed  Google Scholar 

  24. Yamamoto, K., Ichijo, H. & Korsmeyer, S. J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol. Cell Biol. 19, 8469–8478 (1999).

    Article  CAS  Google Scholar 

  25. May, W. S. et al. Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of BCL2 alpha in association with suppression of apoptosis. J. Biol. Chem. 269, 26865–26870 (1994).

    CAS  PubMed  Google Scholar 

  26. Ito, T., Deng, X., Carr, B. & May, W. S. Bcl-2 phosphorylation required for anti-apoptosis function. J. Biol. Chem. 272, 11671–11673 (1997).

    Article  CAS  Google Scholar 

  27. Ruvolo, P. P., Deng, X., Carr, B. K. & May, W. S. A functional role for mitochondrial protein kinase C alpha in Bcl2 phosphorylation and suppression of apoptosis. J. Biol. Chem. 273, 25436–25442 (1998).

    Article  CAS  Google Scholar 

  28. Ueno, H. et al. Association of insulin receptor substrate proteins with Bcl-2 and their effects on its phosphorylation and antiapoptotic function. Mol. Biol. Cell 11, 735–746 (2000).

    Article  CAS  Google Scholar 

  29. Maundrell, K. et al. Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J. Biol. Chem. 272, 25238–25242 (1997).

    Article  CAS  Google Scholar 

  30. Blagosklonny, M. V. et al. Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res. 57, 130–135 (1997).

    CAS  PubMed  Google Scholar 

  31. Srivastava, R. K. et al. Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 18, 3509–3517 (1998).

    Article  CAS  Google Scholar 

  32. Ling, Y. H., Tornos, C. & Perez-Soler, R. Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis. J. Biol. Chem. 273, 18984–18991 (1998).

    Article  CAS  Google Scholar 

  33. Scatena, C. D. et al. Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and taxol-induced growth arrest. J. Biol. Chem. 273, 30777–30784 (1998).

    Article  CAS  Google Scholar 

  34. Alnemri, E. S., Robertson, N. M., Fernandes, T. F., Croce, C. M. & Litwack, G. Overexpressed full-length human BCL2 extends the survival of baculovirus-infected Sf9 insect cells. Proc. Natl Acad. Sci. USA 89, 7295–7299 (1992).

    Article  CAS  Google Scholar 

  35. Chang, B. S., Minn, A. J., Muchmore, S. W., Fesik, S. W. & Thompson, C. B. Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2. EMBO J. 16, 968–977 (1997).

    Article  CAS  Google Scholar 

  36. Fang, G. et al. `Loop' domain is necessary for taxol-induced mobility shift and phosphorylation of Bcl-2 as well as for inhibiting taxol-induced cytosolic accumulation of cytochrome c and apoptosis. Cancer Res. 58, 3202–3208 (1998).

    CAS  PubMed  Google Scholar 

  37. Haldar, S., Basu, A. & Croce, C. M. Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells. Cancer Res. 58, 1609–1615 (1998).

    CAS  PubMed  Google Scholar 

  38. Srivastava, R. K., Mi, Q. S., Hardwick, J. M. & Longo, D. L. Deletion of the loop region of Bcl-2 completely blocks paclitaxel- induced apoptosis. Proc. Natl Acad. Sci. USA 96, 3775–3780 (1999).

    Article  CAS  Google Scholar 

  39. Chan, S. R., Bloomer, C. & Chandran, B. Identification and characterization of human herpesvirus-8 lytic cycle-associated ORF 59 protein and the encoding cDNA by monoclonal antibody. Virology 240, 118–126 (1998).

    Article  CAS  Google Scholar 

  40. Hoang, A. T., Cohen, K. J., Barrett, J. F., Bergstrom, D. A. & Dang, C. V. Participation of cyclin A in Myc-induced apoptosis. Proc. Natl Acad. Sci. USA 91, 6875–6879 (1994).

    Article  CAS  Google Scholar 

  41. Hardwick, J. M. Viral interference with apoptosis. Semin. Cell Dev. Biol. 9, 339–349 (1998).

    Article  CAS  Google Scholar 

  42. Strack, P. R. et al. Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc. Natl Acad. Sci. USA 93, 9571–9576 (1996).

    Article  CAS  Google Scholar 

  43. Grandgirard, D. et al. Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. EMBO J. 17, 1268–1278 (1998).

    Article  CAS  Google Scholar 

  44. Sastry, K. J. et al. Expression of human immunodeficiency virus type I tat results in down-regulation of bcl-2 and induction of apoptosis in hematopoietic cells. Oncogene 13, 487–493 (1996).

    CAS  PubMed  Google Scholar 

  45. Aillet, F. et al. Human immunodeficiency virus induces a dual regulation of Bcl-2, resulting in persistent infection of CD4(+) T- or monocytic cell lines. J. Virol. 72, 9698–9705 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hinds, P. W. et al. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70, 993–1006 (1992).

    Article  CAS  Google Scholar 

  47. Platt, G. M., Cannell, E., Cuomo, M. E., Singh, S. & Mittnacht, S. Detection of the human herpesvirus 8-encoded cyclin protein in primary effusion lymphoma-derived cell lines. Virology 272, 257–266 (2000).

    Article  CAS  Google Scholar 

  48. Arvanitakis, L. et al. Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein–Barr virus. Blood 88, 2648–2654 (1996).

    CAS  PubMed  Google Scholar 

  49. Leppa, S., Saffrich, R., Ansorge, W. & Bohmann, D. Differential regulation of c-Jun by ERK and JNK during PC12 cell differentiation. EMBO J. 17, 4404–4413 (1998).

    Article  CAS  Google Scholar 

  50. Matsushime, H. et al. D-type cyclin-dependent kinase activity in mammalian cells. Mol. Cell Biol. 14, 2066–2076 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Kalkkinen and J. Helin for the MALDI-TOF analysis, and E. E. Kaaya and C. Massambu (Muhimbili Univ. College, Dar-es-Salam, Tanzania) for the Kaposi's sarcoma biopsy material. We are also grateful to E. Cesarman, M. Hardwick, C. Sherr, S. Mittnacht, B. Chandran, L. Andersson, P. Moore, Y. Chang, S. Leppä and M. Eriksson for reagents, M. Schoultz for help with fluorescence-activated cell-sorter analysis, and members of the Mäkelä laboratory for discussions and suggestions. B. Tjäder provided excellent technical assistance. This study was supported by grants from the Academy of Finland, Univ. Helsinki, Helsinki Univ. Central Hospital EVO funds, Finnish Cancer Society, Finnish Cancer Institute, Sigrid Juselius Foundation, and the BIOMED-2 Concerted Action (CA) on the `Pathogenesis of AIDS Kaposi's sarcoma' (contract no. BMH4-97-2302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Päivi M. Ojala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojala, P., Yamamoto, K., Castaños-Vélez, E. et al. The apoptotic v-cyclin–CDK6 complex phosphorylates and inactivates Bcl-2. Nat Cell Biol 2, 819–825 (2000). https://doi.org/10.1038/35041064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing