Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional dissection of in vivo interchromosome association in Saccharomyces cerevisiae

Abstract

Homologue pairing mediates both recombination and segregation of chromosomes at meiosis I. The recognition of nucleic-acid-sequence homology within the somatic nucleus has an impact on DNA repair and epigenetic control of gene expression. Here we investigate interchromosomal interactions using a non-invasive technique that allows tagging and visualization of DNA sequences in vegetative and meiotic live yeast cells. In non-meiotic cells, chromosomes are ordered in the nucleus, but preferential pairing between homologues is not observed. Association of tagged chromosomal domains occurs irrespective of their genomic location, with some preference for similar chromosomal positions. Here we describe a new phenomenon that promotes associations between sequence-identical ectopic tags with a tandem-repeat structure. These associations, termed interchromosome trans-associations, may underlie epigenetic phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interchromosome-association assay and tag positions.
Figure 2: Time course of sporulation.
Figure 3: In vivo chromosome association in meiosis.
Figure 4: In vivo association of GFP chromosome tags during the mitotic cycle.
Figure 5: Trans-association of chromosomal tags.
Figure 6: Dissection of somatic interchromosomal trans-association and meiotic homologue pairing.

Similar content being viewed by others

References

  1. Csink, A. K. & Henikoff, S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381, 529–531 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Dorer, D. R. & Henikoff, S. Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics 147, 1181–1190 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lichten, M. & Haber, J. E. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics 123, 261–268 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kassis, J. A., VanSickle, E. P. & Sensabaugh, S. M. A fragment of engrailed regulatory DNA can mediate transvection of the white gene in Drosophila. Genetics 128, 751–761 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Haber, J. E. et al. Physical monitoring of meiotic and mitotic recombination in yeast. Prog. Nucleic Acids Res. Mol. Biol. 35, 209–259 (1988).

    Article  CAS  Google Scholar 

  6. Loidl, J., Klein, F. & Scherthan, H. Homologous pairing is reduced but not abolished in asynaptic mutants of yeast. J. Cell Biol. 125, 1191–1200 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Weiner, B. M. & Kleckner, N. Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77, 977–991 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Scherthan, H., Bahler, J. & Kohli, J. Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. J. Cell Biol. 127, 273–285 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Burgess, S. M., Kleckner, N. & Weiner, B. M. Somatic pairing of homologs in budding yeast: existence and modulation. Genes Dev. 13, 1627–1641 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bass, H. W., Marshall, W. F., Sedat, J. W., Agard, D. A. & Cande, W. Z. Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J. Cell Biol. 137, 5–18 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scherthan, H. et al. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J. Cell Biol. 134, 1109–1125 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kleckner, N. & Weiner, B. M. Potential advantages of unstable interactions for pairing of chromosomes in meiotic, somatic, and premeiotic cells. Cold Spring Harb. Symp. Quant. Biol. 58, 553–565 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Burgess, S. M. & Kleckner, N. Collisions between yeast chromosomal loci in vivo are governed by three layers of organisation. Genes Dev. 13, 1871–1883 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guacci, V., Hogan, E. & Koshland, D. Centromere position in budding yeast: evidence for anaphase A. Mol. Biol. Cell 8, 957–972 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jin, Q., Trelles-Sticken, E., Scherthan, H. & Loidl, J. Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J. Cell Biol. 141, 21–29 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134, 1349–1363 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Straight, A. F., Belmont, A. S., Robinett, C. C. & Murray, A. W. GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Li, G., Sudlow, G. & Belmont, A. S. Interphase cell cycle dynamics of a late-replicating, heterochromatic homogeneously staining region: precise choreography of condensation/decondensation and nuclear positioning. J. Cell Biol. 140, 975–989 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitchell, A. P. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 58, 56–70 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Haber, J. E., Ray, B. L., Kolb, J. M. & White, C. I. Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast. Proc. Natl Acad. Sci. USA 90, 3363–3367 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jinks-Robertson, S., Michelitch, M. & Ramcharan, S. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol. Cell Biol. 13, 3937–3950 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Inbar, O. & Kupiec, M. Homology search and choice of homologous partner during mitotic recombination. Mol. Cell Biol. 19, 4134–4142 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Melamed, C. & Kupeiec, M. Effect of donor copy number on the rate of gene conversion in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 235, 97–103 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Haber, J. E. & Leung, W. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA 93, 13949–13954 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wolffe, A. & Matzke, M. A. Epigenetics: regulation through repression. Science 286, 481–486 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Henikoff, S. Nuclear organization and gene expression: homologous pairing and long-range interactions. Curr. Opin. Cell Biol. 9, 388–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Jinks-Robertson, S. & Petes, T. D. Chromosomal trans-locations generated by high-frequency meiotic recombination between repeated yeast genes. Genetics 114, 731–752 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lewis, M. et al. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271, 1247–1254 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Lewis, E. B. The theory and application of a new method of detecting chromosomal rearrangements in Drosophila melanogaster. Am. Nat. 88, 225–239 (1954).

    Article  Google Scholar 

  32. Judd, B. H. Transvection: allelic cross talk. Cell 53, 841–843 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Wassenegger, M. & Pelissier, T. A model for RNA-mediated gene silencing in higher plants. Plant Mol. Biol. 37, 349–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Cogoni, C. & Macino, G. Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc. Natl Acad. Sci. USA 94, 10233–10238 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tabara, H., Grishok, A. & Mello, C. C. RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Selker, E. U. Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet. 13, 296–301 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Rossignol, J. L. & Faugeron, G. MIP: an epigenetic gene silencing process in Ascobolus immersus. Curr. Top. Microbiol. Immunol. 197, 179–191 (1995).

    CAS  PubMed  Google Scholar 

  38. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Freeman, L., Aragón-Alcaide, L. & Strunnikov, A. The condesin complex governs chromosome condensation and mitotic transmission of rDNA. J. Cell Biol. 149, 811–824 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Lichten, A. Straight, A. Murray, D. Koshland and K. Nasmyth for research materials, and A. Wolffe, E. Ballestar, M. Dasso, O. Cohen-Fix, L. Freeman, F. Urnov, C. P. Lichtestein and A. R. Leitch for ideas and comments on the manuscript. L.A-A. was supported by the NICHD Intramural Research Training Award and in part by the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Strunnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragón-Alcaide, L., Strunnikov, A. Functional dissection of in vivo interchromosome association in Saccharomyces cerevisiae. Nat Cell Biol 2, 812–818 (2000). https://doi.org/10.1038/35041055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing