Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

cAMP-GEFII is a direct target of cAMP in regulated exocytosis

Abstract

Although cAMP is well known to regulate exocytosis in many secretory cells, its direct target in the exocytotic machinery is not known. Here we show that cAMP-GEFII, a cAMP sensor, binds to Rim (Rab3-interacting molecule, Rab3 being a small G protein) and to a new isoform, Rim2, both of which are putative regulators of fusion of vesicles to the plasma membrane. We also show that cAMP-GEFII, through its interaction with Rim2, mediates cAMP-induced, Ca2+-dependent secretion that is not blocked by an inhibitor of cAMP-dependent protein kinase (PKA). Accordingly, cAMP-GEFII is a direct target of cAMP in regulated exocytosis and is responsible for cAMP-dependent, PKA-independent exocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the structures of Rim2 and Rim1, and the interaction between Rab3A and Rim2.
Figure 2: Interaction of cAMP-GEFII, Rim and Rab3A, and the GEF activity of cAMP-GEFII.
Figure 3: Comparison of the distributions of cAMP-GEFII, Rim1 and Rim2 mRNA.
Figure 4: Effect of cAMP-GEFII on Ca2+-dependent secretion.
Figure 5: Effects of Rim2(ΔA) on the interaction of cAMP-GEFII and full-length Rim2 and on cAMP-GEFII-mediated exocytosis.
Figure 6: Effects of Rim2(ΔB) and syntenin on cAMP-GEFII-mediated exocytosis.
Figure 7: Model of cAMP-dependent exocytosis.

Similar content being viewed by others

References

  1. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  2. Südhof, T. C. The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature 375, 645–653 (1995).

    Article  Google Scholar 

  3. Augustine, G. J. et al. Exocytosis: proteins and perturbations. Annu. Rev. Pharmacol. Toxicol. 36, 659–701 (1996).

    Article  CAS  Google Scholar 

  4. Calakos, N. & Scheller, R. H. Synaptic vesicle biogenesis, docking and fusion: a molecular description. Physiol. Rev. 76, 1–29 (1996).

    Article  CAS  Google Scholar 

  5. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  6. Larkman, A. U. & Jack, J. J. Synaptic plasticity: hippocampal LTP. Curr. Opin. Neurobiol. 5, 324–334 (1995).

    Article  CAS  Google Scholar 

  7. Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long term potentiation in the hippocampus. Nature 377, 115–118 (1995).

    Article  CAS  Google Scholar 

  8. Weisskopf, M. G., Castillo, P. E., Zalutsky, R. A. & Nicoll, R. A. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265, 1878–1882 (1994).

    Article  CAS  Google Scholar 

  9. Salin, P. A., Malenka, R. C. & Nicoll, R. A. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16, 797–803 (1996).

    Article  CAS  Google Scholar 

  10. Chen, C. & Regehr, W. G. The mechanism of cAMP-mediated enhancement at a cerebellar synapse. J. Neurosci. 17, 8687–8694 (1997).

    Article  CAS  Google Scholar 

  11. Kuba, K. & Kumamoto, E. Long-term potentiation of transmitter release induced by adrenaline in bull-frog sympathetic ganglia. J. Physiol. 374, 515–530 (1986).

    Article  CAS  Google Scholar 

  12. Briggs, C. A. & McAfee, D. A. Long-term potentiation at nicotinic synapses in the rat superior cervical ganglion. J. Physiol. 404, 129–144 (1988).

    Article  CAS  Google Scholar 

  13. Scott, T. R. & Bennett, M. R. The effect of ions and second messengers on long-term potentiation of chemical transmission in avian ciliary ganglia. Br. J. Pharmacol. 110, 461–469 (1993).

    Article  CAS  Google Scholar 

  14. Dixon, D. & Atwood, H. L. Adenylate cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction. J. Neurosci. 9, 4246–4252 (1989).

    Article  CAS  Google Scholar 

  15. Prentki, M. & Matschinsky, F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol. Rev. 67, 1185–1248 (1987).

    Article  CAS  Google Scholar 

  16. Jones, P. M. & Persaud, S. J. Protein kinase, protein phosphorylation, and regulation of insulin secretion from pancreatic β-cells. Endocr. Rev. 19, 429–461 (1998).

    CAS  PubMed  Google Scholar 

  17. Macrae, M. B., Davidson, J. S., Millar, R. P. & van der Merwe, P. A. Cyclic AMP stimulates luteinizing-hormone (lutropin) exocytosis in permeabilized sheep anterior-pituitary cells. Synergism with protein kinase C and calcium. Biochem. J. 271, 635–639 (1990).

    Article  CAS  Google Scholar 

  18. Sikdar, S. K., Zorec, R. & Mason, W. T. cAMP directly facilitates Ca-induced exocytosis in bovine lactotrophs. FEBS Lett. 273, 150–154 (1990).

    Article  CAS  Google Scholar 

  19. Vajanaphanich, M. et al. Cross-talk between calcium and cAMP-dependent intracellular signaling pathways. Implications for synergistic secretion in T84 colonic epithelial cells and rat pancreatic acinar cells. J. Clin. Invest. 96, 386–393 (1995).

    Article  CAS  Google Scholar 

  20. Fujita-Yoshigaki, J. Divergence and convergence in regulated exocytosis: the characteristics of cAMP-dependent enzyme secretion of parotid salivary acinar cells. Cell Signal 10, 371–375 (1998).

    Article  CAS  Google Scholar 

  21. Yoshimura, K., Hiramatsu, Y. & Murakami, M. Cyclic AMP potentiates substance P-induced amylase secretion by augmenting the effect of calcium in the rat parotid acinar cells. Biochim. Biophys. Acta 1402, 171–187 (1998).

    Article  CAS  Google Scholar 

  22. Lonart, G., Janz, R., Johnson, K. M. & Südhof, T. C. Mechanism of action of rab3A in mossy fiber LTP. Neuron 21, 1141–1150 (1998).

    Article  CAS  Google Scholar 

  23. Renström, E., Eliasson, L. & Rorsman, P. Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic β-cells. J. Physiol. 502, 105–118 (1997).

    Article  Google Scholar 

  24. Kawasaki, H. et al. A family of cAMP-binding proteins that directly activate Rap1. Science 282, 2275–2279 (1998).

    Article  CAS  Google Scholar 

  25. Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Südhof, T. C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388, 593–598 (1997).

    Article  CAS  Google Scholar 

  26. Ashcroft, F. M. Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97–118 (1988).

    Article  CAS  Google Scholar 

  27. Seino, S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu. Rev. Physiol. 61, 337–362 (1999).

    Article  CAS  Google Scholar 

  28. de Rooij, J. et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474–477 (1998).

    Article  CAS  Google Scholar 

  29. Su, Y. et al. Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science 269, 807–813 (1995).

    Article  CAS  Google Scholar 

  30. Grootjans J. J. et al. Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc. Natl Acad. Sci. USA 94, 13683–13688 (1997).

    Article  CAS  Google Scholar 

  31. Steinberg, R. A., Russell, J. L., Murphy, C. S. & Yphantis, D. A. Activation of type I cyclic AMP-dependent protein kinases with defective cyclic AMP-binding sites. J. Biol. Chem. 262, 2664–2671 (1987).

    CAS  PubMed  Google Scholar 

  32. Burgoyne, R. D. Control of exocytosis in adrenal chromaffin cells. Biochem. Biophys. Acta 1071, 174–202 (1991).

    CAS  PubMed  Google Scholar 

  33. Hawkins, R. D., Kandel, E. R. & Siegelbaum, S. A. Learning to modulate transmitter release: themes and variations in synaptic plasticity. Annu. Rev. Neurosci. 16, 625–665 (1993).

    Article  CAS  Google Scholar 

  34. Ämmälä, C., Ashcroft, F. M. & Rorsman, P. Calcium-independent potentiation of insulin release by cyclic AMP in single β-cells. Nature 363, 356–358 (1993).

    Article  Google Scholar 

  35. Goda, Y. & Stevens, C. F. Synaptic plasticity: the basis of particular types of learning. Curr. Biol. 6, 375–378 (1996).

    Article  CAS  Google Scholar 

  36. Castillo, P. E. et al. Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388, 590–593 (1997).

    Article  CAS  Google Scholar 

  37. Shirataki, H. et al. Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol. Cell Biol. 13, 2061–2068 (1993).

    Article  CAS  Google Scholar 

  38. Li, C. et al. Synaptic target of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C. Neuron 13, 885–898 (1994).

    Article  CAS  Google Scholar 

  39. Aguilar-Bryan, L. & Bryan, J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20, 101–135 (1999).

    CAS  PubMed  Google Scholar 

  40. Eliasson, L. et al. PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic β-cells. Science 271, 813–815 (1996).

    Article  CAS  Google Scholar 

  41. Kotake, K. et al. Noc2, a putative zinc finger protein involved in exocytosis in endocrine cells. J. Biol. Chem. 272, 29407–29410 (1997).

    Article  CAS  Google Scholar 

  42. Inagaki, N. et al. Cloning and functional characterization of a third pituitary adenylate cyclase-activating polypeptide receptor subtype expressed in insulin-secreting cells. Proc. Natl Acad. Sci. USA 91, 2679–2683 (1994).

    Article  CAS  Google Scholar 

  43. Tanaka, J. et al. Cellular distribution of the P2X4 ATP receptor mRNA in the brain and non-neuronal organs of rats. Arch. Histol. Cytol. 59, 485–490 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Sasaki for helpful advice and K. Yamaguchi for technical assistance. We also thank M. Takahashi for critical reading of the manuscript. This work was supported by a Grant-in-Aid for Creative Basic Research (10NP0201) from the Ministry of Education, Science, Sports and Culture; by Scientific Research Grants from the Ministry of Health and Welfare, Japan; by the Uehara Memorial Foundation; by a grant from Novo Nordisk Pharma Ltd.; by a grant for studies on the pathophysiology and complications of diabetes from Tsumura Pharma Ltd.; and by the Yamanouchi Foundation for Research on Metabolic Disorders. T.S. is supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Seino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozaki, N., Shibasaki, T., Kashima, Y. et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2, 805–811 (2000). https://doi.org/10.1038/35041046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041046

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing