Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Three-dimensional reconstruction of dynamin in the constricted state

Abstract

Members of the dynamin family of GTPases have unique structural properties that might reveal a general mechanochemical basis for membrane constriction. Receptor-mediated endocytosis, caveolae internalization and certain trafficking events in the Golgi all require dynamin for vesiculation1. The dynamin-related protein Drp1 (Dlp1) has been implicated in mitochondria fission2 and a plant dynamin-like protein phragmoplastin is involved in the vesicular events leading to cell wall formation3. A common theme among these proteins is their ability to self-assemble into spirals and their localization to areas of membrane fission. Here we present the first three-dimensional structure of dynamin at a resolution of 20 Å, determined from cryo-electron micrographs of tubular crystals in the constricted state. The map reveals a T-shaped dimer consisting of three prominent densities: leg, stalk and head. The structure suggests that the dense stalk and head regions rearrange when GTP is added, a rearrangement that generates a force on the underlying lipid bilayer and thereby leads to membrane constriction. These results indicate that dynamin is a force-generating 'contrictase'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron micrographs of negatively stained ΔPRD dynamin tubes and spirals.
Figure 2: Three-dimensional reconstruction of constricted ΔPRD dynamin tubes.
Figure 3: Domain arrangement of ΔPRD dynamin dimer.
Figure 4: Docking the crystal structures of the PH domain of dynamin17 and the GTPase domain of hGBP1 (ref. 19).

Similar content being viewed by others

References

  1. Hinshaw, J. E. Annu. Rev. Cell. Dev. Biol. 16, 483–519 (2000).

    Article  CAS  Google Scholar 

  2. Erickson, H. P. J. Cell Biol. 148, 1103–1105 (2000).

    Article  CAS  Google Scholar 

  3. Gu, X. & Verma, D. P. Plant Cell 9, 157–169 (1997).

    Article  CAS  Google Scholar 

  4. Hinshaw, J. E. & Schmid, S. L. Nature 374, 190–192 (1995).

    Article  CAS  Google Scholar 

  5. Kosaka, T. & Ikeda, K. J. Neurobiol. 14, 207–225 (1983).

    Article  CAS  Google Scholar 

  6. Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. Nature 374, 186–190 (1995).

    Article  CAS  Google Scholar 

  7. Sweitzer, S. M. & Hinshaw, J. E. Cell 93, 1021–1029 (1998).

    Article  CAS  Google Scholar 

  8. Warnock, D. E., Baba, T. & Schmid, S. L. Mol. Biol. Cell 8, 2553–2562 (1997).

    Article  CAS  Google Scholar 

  9. Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. EMBO J. 16, 6676–6683 (1997).

    Article  CAS  Google Scholar 

  10. Bauerfeind, R., Takei, K. & De Camilli, P. J. Biol. Chem. 272, 30984–30992 (1997).

    Article  CAS  Google Scholar 

  11. Ringstad, N. et al. Neuron 24, 143–154 (1999).

    Article  CAS  Google Scholar 

  12. Sever, S., Damke, H. & Schmid, S. L. J. Cell Biol. 150, 1137–1148 (2000).

    Article  CAS  Google Scholar 

  13. Hill, E., van der Kaay, J., Downes, C. P. & Smythe, E. J. Cell Biol. 152, 309–324 (2001).

    Article  CAS  Google Scholar 

  14. Binns, D. D. et al. J. Protein Chem. 18, 277–290 (1999).

    Article  CAS  Google Scholar 

  15. Toyoshima, C. & Unwin, N. J. Cell Biol. 111, 2623–2635 (1990).

    Article  CAS  Google Scholar 

  16. Burger, K. N., Demel, R. A., Schmid, S. L. & de Kruijff, B. Biochemistry 39, 12485–12493 (2000).

    Article  CAS  Google Scholar 

  17. Ferguson, K. M., Lemmon, M. A., Schlessinger, J. & Sigler, P. B. Cell 79, 199–209 (1994).

    Article  CAS  Google Scholar 

  18. Timm, D. et al. Nature Struct. Biol. 1, 782–788 (1994).

    Article  CAS  Google Scholar 

  19. Prakash, B., Praefcke, G. J., Renault, L., Wittinghofer, A. & Herrmann, C. Nature 403, 567–571 (2000).

    Article  CAS  Google Scholar 

  20. Achiriloaie, M., Barylko, B. & Albanesi, J. P. Mol. Cell. Biol. 19, 1410–1415 (1999).

    Article  CAS  Google Scholar 

  21. Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Curr. Biol. 9, 257–260 (1999).

    Article  CAS  Google Scholar 

  22. Lee, A., Frank, D. W., Marks, M. S. & Lemmon, M. A. Curr. Biol. 9, 261–264 (1999).

    Article  Google Scholar 

  23. Smirnova, E., Shurland, D. L., Newman-Smith, E. D., Pishvaee, B. & van der Bliek, A. M. J. Biol. Chem. 274, 14942–14947 (1999).

    Article  CAS  Google Scholar 

  24. Sever, S., Muhlberg, A. B. & Schmid, S. L. Nature 398, 481–486 (1999).

    Article  CAS  Google Scholar 

  25. Okamoto, P. M., Tripet, B., Litowski, J., Hodges, R. S. & Vallee, R. B. J. Biol. Chem. 274, 10277–10286 (1999).

    Article  CAS  Google Scholar 

  26. Gilbert, A., Paccaud, J. P. & Carpentier, J. L. J. Cell Sci. 110, 3105–3115 (1997).

    CAS  PubMed  Google Scholar 

  27. Marks, B. et al. Nature 410, 231–235 (2001).

    Article  CAS  Google Scholar 

  28. Schmidt, A. et al. Nature 401, 133–141 (1999).

    Article  CAS  Google Scholar 

  29. Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nature Cell Biol. 1, 27–32 (1999).

    Article  CAS  Google Scholar 

  30. Carr, J. F. & Hinshaw, J. E. J. Biol. Chem. 272, 28030–28035 (1997).

    Article  CAS  Google Scholar 

  31. Beroukhim, R. & Unwin, N. Ultramicroscopy 70, 57–81 (1997).

    Article  CAS  Google Scholar 

  32. Carragher, B., Whittaker, M. & Milligan, R. A. J. Struct. Biol. 116, 107–112 (1996).

    Article  CAS  Google Scholar 

  33. Collaborative Computational Project, number 4. Acta Cryst. D 50, 760–763 (1994).

Download references

Acknowledgements

We thank J. Hanover for helpful suggestions and critical reading of the manuscript; workers in S. Schmid's laboratory for providing ΔPRD high titre stock; R. Milligan and A. Lin for assistance with Phoelix and VolVis; B. Sheehan for general computer help; N. Unwin for the use of the MRC helix-processing package; B. Carragher and D. Weber for help with Suprim; A. Steven and M. Cerritelli for assistance with the STEM analysis; B. Bowers for the rotary shadowing work; and F. Dyda, D. Belnap and T. Hirai for help with O. The BNL STEM is an NIH Supported Resource Center, with additional support provided by the Department of Energy, Office of Biological and Environmental Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny E. Hinshaw.

Supplementary information

Supplementary movie

Movie 1 Quarter map of ΔPRD dynamin three-dimensional structure. The map shows two legs, one in front of the other, connected to the stalk region by a narrow linker. The stalk consists of a very dense globular domain that extends and bifurcates into two heads. The head has a distinct contour shape that accommodates the GTPase crystal structure (see Movie 2). (MOV 631 kb)

Supplementary movie

Movie 2 Docking the two crystal structures (PH17 and GTPase19) into the ΔDDPRD dynamin three-dimensional map.The movie demonstrates that GTPase (green) and PH (orange) crystal structures fit very well into the head and leg domains respectively. (MOV 565 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Hinshaw, J. Three-dimensional reconstruction of dynamin in the constricted state. Nat Cell Biol 3, 922–926 (2001). https://doi.org/10.1038/ncb1001-922

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1001-922

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing