Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A nuclear lamin is required for cytoplasmic organization and egg polarity in Drosophila

Abstract

Nuclear lamins are intermediate filaments that compose the nuclear lamina — the filamentous meshwork underlying the inner nuclear membrane — and are required for nuclear assembly, organization and maintenance. Here we present evidence that a nuclear lamin is also required for cytoplasmic organization in two highly polarized cell types. Zygotic loss-of-function mutations in the Drosophila gene encoding the principal lamin (Dm0) disrupt the directed outgrowth of cytoplasmic extensions from terminal cells of the tracheal system. Germline mutant clones disrupt dorsal–ventral polarity of the oocyte. In mutant oocytes, transcripts of the dorsal determinant Gurken, a transforming growth factor-α homologue, fail to localize properly around the anterodorsal surface of the oocyte nucleus; their ventral spread results in dorsalized eggs that resemble those of the classical dorsalizing mutations squid and fs(1)K10. The requirement of a nuclear lamin for cytoplasmic as well as nuclear organization has important implications for both the cellular functions of lamins and the pathogenesis of human diseases caused by lamin mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defects in directed outgrowth of tracheal terminal branches in misg mutants.
Figure 2: Nuclear structure and division defects in misg germline clones.
Figure 3: misg germline clones give rise to dorsalized eggs.

Similar content being viewed by others

References

  1. Samakovlis, C. et al. Development 122, 1395–1407 (1996).

    CAS  PubMed  Google Scholar 

  2. Guillemin, K. et al. Development 122, 1353–1362 (1996).

    CAS  PubMed  Google Scholar 

  3. Gruenbaum, Y. et al. J Cell Biol 106, 585–596 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Brand, A. H. & Perrimon, N. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  5. Chou, T. B. & Perrimon, N. Genetics 144, 1673–1679 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cohen, M., Lee, K. K., Wilson, K. L. & Gruenbaum, Y. Trends Biochem. Sci. 26, 41–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Lenz, B. B. et al. J. Cell Biol. 137, 1001–1016 (1997).

    Article  Google Scholar 

  8. Liu, J. et al. Mol. Biol. Cell 11, 3937–3947 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sullivan, T. et al. J. Cell Biol. 147, 913–920 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson, K. L., Zastrow, M. S. & Lee, K. K. Cell 104, 647–650 (2001).

    CAS  PubMed  Google Scholar 

  11. Nilson, L. A. & Schupbach, T. Curr. Top. Dev. Biol. 44, 203–243 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Roth, S., Neuman, S. F., Barcelo, G. & Schupbach, T. Cell 81, 967–978 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Roth, S. & Schupbach, T. Development 120, 2245–2257 (1994).

    CAS  PubMed  Google Scholar 

  14. Peri, F., Bokel, C. & Roth, S. Mech. Dev. 81, 75–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Serano, T. L., Karlin-McGinness, M. & Cohen, R. S. Mech. Dev. 51, 183–192 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Marshall, W. F. & Sedat, J. W. Results Probl. Cell Differ. 25, 283–301 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Saunders, C. & Cohen, R. S. Mol. Cell 3, 43–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Norvell, A., Kelley, R. L., Wehr, K. & Schupbach, T. Genes Dev. 13, 864–876 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maniotis, A. J., Chen, C. S. & Ingber, D. E. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fey, E. G., Wan, K. M. & Penman, S. J. Cell Biol. 98, 1973–1984 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Fatkin, D. et al. N. Engl. J. Med. 341, 1715–1724 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Bonne, G. et al. Ann. Neurol. 48, 170–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Wilson, K. L. Trends Cell Biol. 10, 125–129 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Fulton, A. B. J. Cell Biochem. 52, 148–152 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Mitsui, T. et al. J. Neuropathol. Exp. Neurol. 56, 94–101 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Toniolo, D. & Minetti, C. Curr. Opin. Genet. Dev. 9, 275–282 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Spradling, A. C. et al. Proc. Natl Acad. Sci. USA 92, 10824–10830 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Szidonya, J. & Reuter, G. Genet. Res. 51, 197–208 (1988).

    Article  Google Scholar 

  29. Verheyen, E. & Cooley, L. in Drosophila melanogaster: Practical Uses in Cell and Molecular Biology (eds Goldstein, L. S. B. & Fyrberg, E. A.) 545–561 (Academic, New York, 1994).

    Google Scholar 

  30. Kopczynski, C. C., Davis, G. W. & Goodman, C. S. Science 271, 1867–1870 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Perrimon, N., Noll, E., McCall, K. & Brand, A. Dev. Genet. 12, 238–252 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Osman, M., Paz, M., Landesman, Y., Fainsod, A. & Gruenbaum, Y. Genomics 8, 217–224 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. McGrail, M. & Hays, T. S. Development 124, 2409–2419 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Fisher, T. Schubach and N. Perrimon for antibodies and fly strains; and I. Davis, Y. Gruenbaum, J. Sedat, K. Wilson, and members of the Krasnow lab for helpful discussions. This work was supported by a grant from the NIH. M.A.K. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Krasnow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillemin, K., Williams, T. & Krasnow, M. A nuclear lamin is required for cytoplasmic organization and egg polarity in Drosophila. Nat Cell Biol 3, 848–851 (2001). https://doi.org/10.1038/ncb0901-848

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0901-848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing