Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The DNA repair protein Rad23 is a negative regulator of multi-ubiquitin chain assembly

Abstract

Rad23 is a nucleotide-excision repair protein with a previously unknown biochemical function. We determined that yeast and human Rad23 inhibited multi-ubiquitin (Ub) chain formation and the degradation of proteolytic substrates. Significantly, Rad23 could be co-precipitated with a substrate that contained a short multi-Ub chain. The UV sensitivity of rad23Δ was reduced in mutants lacking the E2 enzyme Ubc4, or the multi-Ub chain-promoting factor Ufd2. These studies suggest that the stability of proteolytic substrates is governed by the competing action of multi-Ub chain-promoting and chain-inhibiting factors. The stabilization of DNA repair and stress factors could represent an important biological function of Rad23.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rad23 inhibits multi-Ub chain assembly.
Figure 2: Ubc2 assembles a multi-Ub chain on histone H2B.
Figure 3: Rad23 does not form a thioester bond with Ub, and does not prevent E1 and E2 from forming this intermediate.
Figure 4: Domain structure and conservation of Rad23 function.
Figure 5: Rad23 can interfere with the degradation of proteolytic substrates in vivo.
Figure 6: A role for proteolysis in nucleotide-excision repair.

Similar content being viewed by others

References

  1. de Laat, W. L., Jaspers, N. G. J. & Hoeijmakers, J. H. J. Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999).

    Article  CAS  Google Scholar 

  2. Prakash, S., Sung, P. & Prakash, L. DNA repair genes and proteins of Saccharomyces cerevisiae. Annu. Rev. Genet. 27, 33–70 (1993).

    Article  CAS  Google Scholar 

  3. Guzder, S. N., Sung, P., Prakash, L. & Prakash, S. Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. J. Biol. Chem. 273, 31541–31546 (1998).

    Article  CAS  Google Scholar 

  4. Jansen, L. E. T., Verhage, R. A. & Brouwer, J. Preferential binding of yeast Rad4–Rad23 complex to damaged DNA. J. Biol. Chem. 273, 33111–33114 (1998).

    Article  CAS  Google Scholar 

  5. Guzder, S. M., Bailly, V., Sung, P., Prakash, L. & Prakash, S. Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J. Biol. Chem. 270, 8385–8388 (1995).

    Article  CAS  Google Scholar 

  6. Guzder, S. N., Habraken, Y., Sung, P., Prakash, L. & Prakash, S. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, Replication Protein A, and transcription factor TFIIH. J. Biol. Chem. 270, 12973–12976 (1995).

    Article  CAS  Google Scholar 

  7. Guzder, S. N., Sung, P., Prakash, L. & Prakash, S. Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J. Biol. Chem. 271, 8903–8910 (1996).

    Article  CAS  Google Scholar 

  8. Sugasawa, K. et al. HHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol. Cell. Biol. 16, 4852–4861 (1996).

    Article  CAS  Google Scholar 

  9. Schauber, C. et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715–718 (1998).

    Article  CAS  Google Scholar 

  10. Watkins, J. F., Sung, P., Prakash, L. & Prakash, S. The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol. Cell. Biol. 13, 7757–7765 (1993).

    Article  CAS  Google Scholar 

  11. Lambertson, D., Chen, L. & Madura, K. Pleiotropic growth and proteolytic defects caused by the loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153, 69–79 (1999).

    CAS  Google Scholar 

  12. van Nocker, S. et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell. Biol. 16, 6020–6028 (1996).

    Article  CAS  Google Scholar 

  13. Madura, K. & Varshavsky, A. Degradation of Gα by the N-end rule pathway. Science 265, 1454–1458 (1994).

    Article  CAS  Google Scholar 

  14. Morrison, A., Miller, E. J. & Prakash, L. Domain structure and functional analysis of the carboxy-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae. Mol. Cell. Biol. 8, 1179–1185 (1988).

    Article  CAS  Google Scholar 

  15. Picologlou, S., Brown, N. & Liebman, S.W. Mutations in RAD6, a yeast gene encoding a ubiquitin-conjugating enzyme, stimulate retrotransposition. Mol. Gen. Genet. 218, 465–474 (1990).

    Google Scholar 

  16. Dohmen, R. J., Madura, K., Bartel, B. & Varshavsky, A. The N-end rule is mediated by the Ubc2 (Rad6) ubiquitin-conjugating enzyme. Proc. Natl Acad. Sci., USA. 88, 7351–7355 (1991).

    Article  CAS  Google Scholar 

  17. Nuang, H., Kahana, A., Gottschling, D. E., Prakash, L. & Liebman, S. The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 6693–6699 (1997).

    Article  Google Scholar 

  18. Byrd, C., Turner, G. C. & Varshavsky, A. The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J. 17, 269–277 (1998).

    Article  CAS  Google Scholar 

  19. Robzyk, K., Recht, J. & Osley, M. A. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501–504 (2000).

    Article  CAS  Google Scholar 

  20. Biggins, S., Ivanovska, I. & Rose, R. D. Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. J. Cell Biol. 133, 1331–1346 (1996).

    Article  CAS  Google Scholar 

  21. van der Spek, P.J. et al. Cloning, comparative mapping, and RNA expression of the mouse homologues of the Saccharomyces cerevisiae nucleotide excision repair gene RAD23. Genomics 31, 20–27 (1996).

    Article  CAS  Google Scholar 

  22. Sung, P., Prakash, S. & Prakash, L. The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity. Genes & Dev. 2, 1476–1485 (1988).

    Article  CAS  Google Scholar 

  23. Hershko, A. & Heller, H. Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates. Biochem. Biophys. Res. Comm. 128, 1079–1086 (1985).

    Article  CAS  Google Scholar 

  24. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  Google Scholar 

  25. He, Z., Wong, J. M. S., Maniar, H. S., Brill, S. J. and Ingles, C. J. Assessing the requirements for nucleotide excision repair proteins of Saccharomyces cerevisiae in an in vitro system. J. Biol. Chem. 271, 28243–28249 (1996).

    Article  CAS  Google Scholar 

  26. Mu, D., Wakasugi, M., Hsu, D. S. & Sancar, A. Characterization of reaction intermediates of human excision repair nuclease. J. Biol. Chem. 272, 28971–28979 (1997.).

    Article  CAS  Google Scholar 

  27. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  Google Scholar 

  28. Varshavsky, A. The N-end rule. Cell 69, 725–735 (1992).

    Article  CAS  Google Scholar 

  29. Johnson, E. S., Ma, P. C. M., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).

    Article  CAS  Google Scholar 

  30. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).

    Article  CAS  Google Scholar 

  31. Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 3, 687–695 (1999).

    Article  CAS  Google Scholar 

  32. Hiyama, H. et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26S proteasome. J. Biol. Chem. 274, 28019–28025 (1999).

    Article  CAS  Google Scholar 

  33. Funakoshi, M., Geley, S., Hunt, T., Nishimoto, T. & Kobayashi, H. Identification of XDRP1; a Xenopus protein related to yeast Dsk2 binds to the N-terminus of cyclin A and inhibits its degradation. EMBO J. 18, 5009–5018 (1999).

    Article  CAS  Google Scholar 

  34. Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global nucleotide excision repair. Mol. Cell 2, 223–232 (1998).

    Article  CAS  Google Scholar 

  35. Masutani, C. et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 13, 1831–1843 (1994).

    Article  CAS  Google Scholar 

  36. Seol, J. H. et al. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev. 13, 1614–1626 (1999).

    Article  CAS  Google Scholar 

  37. Xie, Y. & Varshavsky, A. The E2–E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J 18, 6832–6844 (1999).

    Article  CAS  Google Scholar 

  38. Pickart, C. M. Targeting of substrates to the 26S proteasome. FASEB J. 11, 1055–1066 (1997).

    Article  CAS  Google Scholar 

  39. Chen, P., Johnson, P., Sommer, T., Jentsch, S. & Hochstrasser, M. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor. Cell 74, 357–369 (1993).

    Article  CAS  Google Scholar 

  40. Tongaonkar, P. & Madura, K. Reconstituting ubiquitination reactions with affinity-purified components and 32P-ubiquitin. Anal. Biochem. 260, 307–319 (1998).

    Article  Google Scholar 

  41. Chen, Z., Niles, E. G. & Pickart, C. M. Isolation of a cDNA encoding a mammalian multiubiquitinating enzyme (E2 25K) and overexpression of the functional enzyme in Escherichia coli. J. Biol. Chem. 265, 15698–15704 (1991).

    Google Scholar 

  42. Gietz, R. D. & Sugino, A. New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534 (1988).

    Article  CAS  Google Scholar 

  43. Hodgins, R., Gwozd, C., Arnason, T., Cummings, M. & Ellison, M. J. The tail of a ubiquitin-conjugating enzyme redirects multi-ubiquitin chain synthesis from the lysine 48-linked configuration to a novel nonlysine-linked form. J. Biol. Chem. 271, 28766–28771 (1996).

    Article  CAS  Google Scholar 

  44. You, J., Cohen, R. E. & Pickart, C. M. Construct for high-level expression and low misincorporation of lysine for arginine during expression of pET-encoded eukaryotic proteins in Escherichia coli. Biotechniques 27, 2–6 (1999).

    Article  Google Scholar 

  45. Bartel, B., Wunning, I. & Varshavsky, A. The recognition component of the N-end rule pathway. EMBO J. 9, 3179–3189 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Vega for recombinant Rad23 protein and for constructing a plasmid that expressed ΔUbLrad23. We also thank J. Huibregtse for providing reagents to examine the effect of Rad23 on Rsp5-mediated ubiquitination in rabbit reticulocyte lysates, D. Stern for the GST–Spk1 construct and C. Pickart for plasmids pGEX-E2-25K and pJY2. M. Ellison, M. Hochstrasser and D. Gietz are thanked for providing plasmids and strains. K. Sweder is thanked for assistance with the NIH Scan densitometry analysis. D.L. was supported by a pre-doctoral fellowship from the American Heart Association (9810001T). C.S. was supported by Postdoctoral Fellowships from the Robert Wood Johnson Foundation and New Jersey Commission on Cancer Research (98-2005-CCR-00). These studies were supported by grants to K.M. from the National Institutes of Health (GM-RO1-52058) and the Cancer Institute of New Jersey (561735). K.M. is a member of the Cancer Institute of New Jersey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Madura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortolan, T., Tongaonkar, P., Lambertson, D. et al. The DNA repair protein Rad23 is a negative regulator of multi-ubiquitin chain assembly. Nat Cell Biol 2, 601–608 (2000). https://doi.org/10.1038/35023547

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023547

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing