Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase

Abstract

Activation of the canonical mitogen-activated protein kinase (MAPK) cascade by soluble mitogens is blocked in non-adherent cells. It is also blocked in cells in which the cAMP-dependent protein kinase (PKA) is activated. Here we show that inhibition of PKA allows anchorage-independent stimulation of the MAPK cascade by growth factors. This effect is transient, and its duration correlates with sustained tyrosine phosphorylation of paxillin and focal-adhesion kinase (FAK) in non-adherent cells. The effect is sensitive to cytochalasin D, implicating the actin cytoskeleton as an important factor in mediating this anchorage-independent signalling. Interestingly, constitutively active p21-activated kinase (PAK) also allows anchorage-independent MAPK signalling. Furthermore, PKA negatively regulates PAK in vivo, and whereas the induction of anchorage-independent signaling resulting from PKA suppression is blocked by dominant negative PAK, it is markedly prolonged by constitutively active PAK. These observations indicate that PKA and PAK are important regulators of anchorage-dependent signal transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of PKA induces anchorage-independent activation of the MAPK cascade.
Figure 2: Induction of anchorage-independence by PKA inhibition is transient.
Figure 3: PKA is activated upon detachment of cells.
Figure 4: PKA inhibition delays dephosphorylation and dissociation of FAK and paxillin after detachment.
Figure 5: Anchorage-independent MAPK activation is blocked by cytochalasin D.
Figure 6: Negative regulation of PAK by PKA in vivo.
Figure 7: PKA phosphorylates PAK in vitro and in vivo.
Figure 8: PAK and PKA regulate anchorage-dependent signalling to MAPK.
Figure 9: PAK and dnPKA synergize to prolong the anchorage-independent phenotype.

Similar content being viewed by others

References

  1. Howe, A., Aplin, A. E., Alahari, S. K. & Juliano, R. L. Integrin signaling and cell growth control. Curr. Opin. Cell Biol. 10, 220–231 ( 1998).

    Article  CAS  Google Scholar 

  2. Assoian, R. K. & Zhu, X. Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr. Opin. Cell Biol. 9, 93–98 (1997).

    Article  CAS  Google Scholar 

  3. Schwartz, M. A. Integrins, oncogenes, and anchorage independence. J. Cell Biol. 139, 575–578 ( 1997).

    Article  CAS  Google Scholar 

  4. Widmann, C., Gibson, S., Jarpe, M. B. & Johnson, G. L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human . Physiol. Rev. 79, 143– 180 (1999).

    Article  CAS  Google Scholar 

  5. Miyamoto, S., Teramoto, H., Gutkind, J. S. & Yamada, K. M. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol. 135, 1633–1642 (1996).

    Article  CAS  Google Scholar 

  6. Cybulsky, A. V. & McTavish, A. J. Extracellular matrix is required for MAP kinase activation and proliferation of rat glomerular epithelial cells. Biochem. Biophys. Res. Commun. 231 , 160–166 (1997).

    Article  CAS  Google Scholar 

  7. Lin, T. H., Chen, Q., Howe, A. & Juliano, R. L. Cell anchorage permits efficient signal transduction between ras and its downstream kinases . J. Biol. Chem. 272, 8849– 8852 (1997).

    Article  CAS  Google Scholar 

  8. Renshaw, M. W., Ren, X. D. & Schwartz, M. A. Growth factor activation of MAP kinase requires cell adhesion. EMBO J. 16, 5592– 5599 (1997).

    Article  CAS  Google Scholar 

  9. Graves, L. M. & Lawrence, J. C. Jr, Insulin, growth factors, and cAMP: antagonism in the signal transduction pathways. Trends Endocrinol. Metabol. 7, 43– 50 (1996).

    Article  CAS  Google Scholar 

  10. Cho-Chung, Y. S., Pepe, S., Clair, T., Budillon, A. & Nesterova, M. cAMP-dependent protein kinase: role in normal and malignant growth. Crit. Rev. Oncol. Hematol. 21, 33 –61 (1995).

    Article  CAS  Google Scholar 

  11. Roger, P. P., Reuse, S., Maenhaut, C. & Dumont, J. E. Multiple facets of the modulation of growth by cAMP. Vitam. Horm. 51 , 59–191 (1995).

    Article  CAS  Google Scholar 

  12. Schoenwaelder, S. M. & Burridge, K. Bidirectional signaling between the cytoskeleton and integrins. Curr. Opin. Cell Biol. 11, 274–286 ( 1999).

    Article  CAS  Google Scholar 

  13. Aplin, A. E. & Juliano, R. L. Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway. J. Cell Sci. 112, 695–706 ( 1999).

    CAS  Google Scholar 

  14. Tapon, N. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 9, 86–92 (1997 ).

    Article  CAS  Google Scholar 

  15. Knaus, U. G. & Bokoch, G. M. The p21Rac/Cdc42-activated kinases (PAKs). Int. J. Biochem. Cell Biol. 30, 857–862 (1998).

    Article  CAS  Google Scholar 

  16. King, A. J. et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396, 180–183 (1998).

    Article  CAS  Google Scholar 

  17. Frost, J. A. et al. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 16, 6426 –6438 (1997).

    Article  CAS  Google Scholar 

  18. Howe, D. G. & McCarthy, K. D. A dicistronic retroviral vector and culture model for analysis of neuron-Schwann cell interactions. J. Neurosci. Methods 83, 133–142 (1998).

    Article  CAS  Google Scholar 

  19. McDonald, R. A., Matthews, R. P., Idzerda, R. L. & McKnight, G. S. Basal expression of the cystic fibrosis transmembrane conductance regulator gene is dependent on protein kinase A activity. Proc. Natl Acad. Sci. USA 92, 7560–7564 ( 1995).

    Article  CAS  Google Scholar 

  20. Day, R. N., Walder, J. A. & Maurer, R. A. A protein kinase inhibitor gene reduces both basal and multihormone-stimulated prolactin gene transcription. J. Biol. Chem. 264, 431–436 ( 1989).

    CAS  Google Scholar 

  21. Fong, J. H. & Ingber, D. E. Modulation of adhesion-dependent cAMP signaling by echistatin and alendronate. Biochem. Biophys. Res. Commun. 221, 19–24 (1996).

    Article  CAS  Google Scholar 

  22. O'Connor, K. L., Shaw, L. M. & Mercurio, A. M. Release of cAMP gating by the alpha6beta4 integrin stimulates lamellae formation and the chemotactic migration of invasive carcinoma cells. J. Cell Biol. 143, 1749– 1760 (1998).

    Article  CAS  Google Scholar 

  23. He, Y. & Grinnell, F. Stress relaxation of fibroblasts activates a cyclic AMP signaling pathway. J. Cell Biol. 126, 457–464 (1994).

    Article  CAS  Google Scholar 

  24. Aplin, A. E., Howe, A. K. & Juliano, R. L. Cell adhesion molecules, signal transduction, and cell growth. Curr. Opin. Cell Biol. 11, 737–744 (1999).

    Article  CAS  Google Scholar 

  25. Vilgrain, I., Chinn, A., Gaillard, I., Chambaz, E. M. & Feige, J. J. Hormonal regulation of focal adhesions in bovine adrenocortical cells: induction of paxillin dephosphorylation by adrenocorticotropic hormone. Biochem. J. 332, 533– 540 (1998).

    Article  CAS  Google Scholar 

  26. Han, J. D. & Rubin, C. S. Regulation of cytoskeleton organization and paxillin dephosphorylation by cAMP. Studies on murine Y1 adrenal cells . J. Biol. Chem. 271, 29211– 29215 (1996).

    Article  CAS  Google Scholar 

  27. Takahashi, T., Kawahara, Y., Okuda, M. & Yokoyama, M. Increasing cAMP antagonizes hypertrophic response to angiotensin II without affecting Ras and MAP kinase activation in vascular smooth muscle cells. FEBS Lett. 397, 89–92 ( 1996).

    Article  CAS  Google Scholar 

  28. Schoenwaelder, S. M. & Burridge, K. Evidence for a calpeptin-sensitive protein-tyrosine phosphatase upstream of the small GTPase Rho. A novel role for the calpain inhibitor calpeptin in the inhibition of protein-tyrosine phosphatases. J. Biol. Chem. 274, 14359–14367 (1999).

    Article  CAS  Google Scholar 

  29. Padmanabhan, J., Clayton, D. & Shelanski, M. L. Dibutyryl cyclic AMP-induced process formation in astrocytes is associated with a decrease in tyrosine phosphorylation of focal adhesion kinase and paxillin. J. Neurobiol. 39, 407–422 (1999).

    Article  CAS  Google Scholar 

  30. Troyer, D. A., Bouton, A., Bedolla, R. & Padilla, R. Tyrosine phosphorylation of focal adhesion kinase (p125FAK): regulation by cAMP and thrombin in mesangial cells. J. Am. Soc. Nephrol. 7, 415– 423 (1996).

    CAS  Google Scholar 

  31. Aplin, A. E., Howe, A., Alahari, S. K. & Juliano, R. L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50, 197–263 ( 1998).

    CAS  Google Scholar 

  32. Renshaw, M. W., Price, L. S. & Schwartz, M. A. Focal adhesion kinase mediates the integrin signaling requirement for growth factor activation of MAP kinase. J. Cell Biol. 147, 611–618 ( 1999).

    Article  CAS  Google Scholar 

  33. Tang, Y., Yu, J. & Field, J. Signals from the Ras, Rac, and Rho GTPases converge on the Pak protein kinase in Rat-1 fibroblasts. Mol. Cell Biol. 19, 1881–1891 (1999).

    Article  CAS  Google Scholar 

  34. Tang, Y. et al. Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol. Cell Biol. 17, 4454– 4464 (1997).

    Article  CAS  Google Scholar 

  35. del Pozo, M. A., Price, L. S., Alderson, N. B., Ren, X. & Schwartz, M. A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK . EMBO J. 19, 2008–2014 (2000).

    Article  CAS  Google Scholar 

  36. Faure, S. et al. Control of G2/M transition in Xenopus by a member of the p21-activated kinase (PAK) family: a link between protein kinase A and PAK signaling pathways? J. Biol. Chem. 274, 3573–3579 (1999).

    Article  CAS  Google Scholar 

  37. Chung, C. Y. & Firtel, R. A. PAKa, a putative PAK family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxis. J. Cell Biol. 147, 559–576 ( 1999).

    Article  CAS  Google Scholar 

  38. Zhou, T. H. et al. Identification of a human brain-specific isoform of mammalian STE20-like kinase 3 that is regulated by cAMP-dependent protein kinase. J. Biol. Chem. 275, 2513–2519 (2000).

    Article  CAS  Google Scholar 

  39. Zenke, F. T., King, C. C., Bohl, B. P. & Bokoch, G. M. Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J. Biol. Chem. 274, 32565–32573 (1999).

    Article  CAS  Google Scholar 

  40. Westphal, R. S., Coffee, R. L. Jr, Marotta, A., Pelech, S. L. & Wadzinski, B. E. Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. J. Biol. Chem. 274, 687–692 ( 1999).

    Article  CAS  Google Scholar 

  41. Turner, C. E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).

    Article  CAS  Google Scholar 

  42. McCarty, J. H. The Nck SH2/SH3 adaptor protein: a regulator of multiple intracellular signal transduction events. Bioessays 20, 913– 921 (1998).

    Article  CAS  Google Scholar 

  43. Whitmarsh, A. J. & Davis, R. J. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals . Trends Biochem. Sci. 23, 481– 485 (1998).

    Article  CAS  Google Scholar 

  44. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075– 2080 (1997).

    Article  CAS  Google Scholar 

  45. Holt, M. R., Critchley, D. R. & Brindle, N. P. The focal adhesion phosphoprotein, VASP. Int. J. Biochem. Cell Biol. 30, 307– 311 (1998).

    Article  CAS  Google Scholar 

  46. Dong, J. M., Leung, T., Manser, E. & Lim, L. cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKalpha. J. Biol. Chem. 273, 22554– 22562 (1998).

    Article  CAS  Google Scholar 

  47. Ohta, Y., Akiyama, T., Nishida, E. & Sakai, H. Protein kinase C and cAMP-dependent protein kinase induce opposite effects on actin polymerizability . FEBS Lett. 222, 305–310 (1987).

    Article  CAS  Google Scholar 

  48. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).

    Article  CAS  Google Scholar 

  49. Howe, A. K. & Juliano, R. L. Distinct mechanisms mediate the initial and sustained phases of integrin-mediated activation of the Raf/MEK/mitogen-activated protein kinase cascade. J. Biol. Chem. 273, 27268–27274 (1998).

    Article  CAS  Google Scholar 

  50. Graves, L. M. et al. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc. Natl Acad. Sci. USA 90, 10300 –10304 (1993).

    Article  CAS  Google Scholar 

  51. Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M. & Schwartz, M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79, 507 –513 (1994).

    Article  CAS  Google Scholar 

  52. Boyle, W. J., van der Geer, P. & Hunter, T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201, 110–149 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Howe and K. McCarthy (UNC) and R. Maurer (Oregon Health Sciences University) for creating and providing the stable cell lines and various PKA constructs used in this study. We also thank M. Cobb (Southwestern Medical Center) and G. Bokoch (Scripps Research Institute) for PAK constructs, J. Sondek (UNC) for purified Cdc42, and S. Short, A. Aplin and L. Graves for helpful discussions. This work was supported by grants from the National Institutes of Health (to R.L.J.) and the American Cancer Society (to A.K.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan K. Howe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howe, A., Juliano, R. Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase. Nat Cell Biol 2, 593–600 (2000). https://doi.org/10.1038/35023536

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023536

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing