Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Why do worms need cholesterol?

Abstract

Cholesterol is a structural component of animal membranes that influences fluidity, permeability and formation of lipid microdomains. It is also a precursor to signalling molecules, including mammalian steroid hormones and insect ecdysones. The nematode Caenorhabditis elegans requires too little cholesterol for it to have a major role in membrane structure. Instead, its most probable signalling functions are to control molting and induce a specialized non-feeding larval stage, although no cholesterol-derived signalling molecule has yet been identified for these or any other functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cholesterol has numerous functions in eukaryotic cells.
Figure 2: Nematodes can modify, but not synthesize, sterols.

Similar content being viewed by others

References

  1. Haines, T.H. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog. Lipid Res. 40, 299–324 (2001).

    Article  CAS  Google Scholar 

  2. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  3. Mann, R.K. & Beachy, P.A. Cholesterol modification of proteins. Biochim. Biophys. Acta 1529, 188–202 (2000).

    Article  CAS  Google Scholar 

  4. Ashrafi, K. et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272 (2003).

    Article  CAS  Google Scholar 

  5. McKay, R.M., McKay, J.P., Avery, L. & Graff, J.M. C. elegans: a model for exploring the genetics of fat storage. Dev. Cell 4, 131–142 (2003).

    Article  CAS  Google Scholar 

  6. Hieb, W.F. & Rothstein, M. Sterol requirement for reproduction of a free-living nematode. Science 160, 778–780 (1968).

    Article  CAS  Google Scholar 

  7. Chitwood, D.J. Biochemistry and function of nematode steroids. Crit. Rev. Biochem. Mol. Biol. 34, 273–284 (1999).

    Article  CAS  Google Scholar 

  8. Chitwood, D.J., Lusby, W.R., Lozano, R., Thompson, M.J. & Svoboda, J.A. Novel nuclear methylation of sterols by the nematode Caenorhabditis elegans. Steroids 42, 311–319 (1983).

    Article  CAS  Google Scholar 

  9. Sluder, A.E., Mathews, S.W., Hough, D., Yin, V.P. & Maina, C.V. The nuclear receptor superfamily has undergone extensive proliferation and diversification in nematodes. Genome Res. 9, 103–120 (1999).

    CAS  PubMed  Google Scholar 

  10. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yochem, J., Tuck, S., Greenwald, I. & Han, M. A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development 126, 597–606 (1999).

    CAS  PubMed  Google Scholar 

  12. Shim, Y.H., Chun, J.H., Lee, E.Y. & Paik, Y.K. Role of cholesterol in germ-line development of Caenorhabditis elegans. Mol. Reprod. Dev. 61, 358–366 (2002).

    Article  CAS  Google Scholar 

  13. Crowder, C.M., Westover, E.J., Kumar, A.S., Ostlund, R.E., Jr & Covey, D.F. Enantiospecificity of cholesterol function in vivo. J. Biol. Chem. 276, 44369–44372 (2001).

    Article  CAS  Google Scholar 

  14. Merris, M. et al. Sterol effects and sites of sterol accumulation in Caenorhabditis elegans: developmental requirement for 4α-methyl sterols. J. Lipid Res. 44, 172–181 (2003).

    Article  CAS  Google Scholar 

  15. Chitwood, D.J., Lusby, W.R., Lozano, R., Thompson, M.J. & Svoboda, J.A. Sterol metabolism in the nematode Caenorhabdities elegans. Lipids 19, 500–505 (1984).

    Article  CAS  Google Scholar 

  16. Korlach, J., Schwille, P., Webb, W.W. & Feigenson, G.W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl Acad. Sci. USA 96, 8461–8466 (1999).

    Article  CAS  Google Scholar 

  17. Kahya, N., Scherfeld, D., Bacia, K., Poolman, B. & Schwille, P. Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. DOI:10.1074/jbc.M302969200 (2003).

  18. Matyash, V. et al. Distribution and transport of cholesterol in Caenorhabditis elegans. Mol. Biol. Cell 12, 1725–1736 (2001).

    Article  CAS  Google Scholar 

  19. Scheel, J., Srinivasan, J., Honnert, U., Henske, A. & Kurzchalia, T.V. Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nature Cell Biol. 1, 127–129 (1999).

    Article  CAS  Google Scholar 

  20. Silberkang, M., Havel, C.M., Friend, D.S., McCarthy, B.J. & Watson, J.A. Isoprene synthesis in isolated embryonic Drosophila cells. I. Sterol-deficient eukaryotic cells. J. Biol. Chem. 258, 8503–8511 (1983).

    CAS  PubMed  Google Scholar 

  21. Seegmiller, A.C. et al. The SREBP pathway in Drosophila: regulation by palmitate, not sterols. Dev. Cell 2, 229–238 (2002).

    Article  CAS  Google Scholar 

  22. Dobrosotskaya, I.Y., Seegmiller, A.C., Brown, M.S., Goldstein, J.L. & Rawson, R.B. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 296, 879–883 (2002).

    Article  CAS  Google Scholar 

  23. Baker, M.E. Is vitellogenin an ancestor of apolipoprotein B-100 of human low-density lipoprotein and human lipoprotein lipase? Biochem. J. 255, 1057–1060 (1988).

    Article  CAS  Google Scholar 

  24. Grant, B. & Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 10, 4311–4326 (1999).

    Article  CAS  Google Scholar 

  25. Nelson, D.R. Metazoan cytochrome P450 evolution. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 121, 15–22 (1998).

    Article  CAS  Google Scholar 

  26. Aspock, G., Kagoshima, H., Niklaus, G. & Burglin, T.R. Caenorhabditis elegans has scores of hedgehog-related genes: sequence and expression analysis. Genome Res. 9, 909–923 (1999).

    Article  CAS  Google Scholar 

  27. Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  Google Scholar 

  28. Riddle, D.L. & Albert, P.S. in C. elegans II (eds Riddle, D.L., Blumenthal, T., Meyer, J.B. & Priess, J.R.) 739–768 (Cold Spring Harbor Laboratory Press, 1997).

    Google Scholar 

  29. Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev. Cell 1, 841–851 (2001).

    Article  CAS  Google Scholar 

  30. Jia, K., Albert, P.S. & Riddle, D.L. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129, 221–231 (2002).

    CAS  PubMed  Google Scholar 

  31. Antebi, A., Culotti, J.G. & Hedgecock, E.M. daf-12 regulates developmental age and the dauer alternative in Caenorhabditis elegans. Development 125, 1191–1205 (1998).

    CAS  PubMed  Google Scholar 

  32. Antebi, A., Yeh, W.H., Tait, D., Hedgecock, E.M. & Riddle, D.L. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev. 14, 1512–1527 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sym, M., Basson, M. & Johnson, C. A model for niemann-pick type C disease in the nematode Caenorhabditis elegans. Curr. Biol. 10, 527–530 (2000).

    Article  CAS  Google Scholar 

  34. Kostrouchova, M., Krause, M., Kostrouch, Z. & Rall, J.E. CHR3: a Caenorhabditis elegans orphan nuclear hormone receptor required for proper epidermal development and molting. Development 125, 1617–1626 (1998).

    CAS  PubMed  Google Scholar 

  35. Kostrouchova, M., Krause, M., Kostrouch, Z. & Rall, J.E. Nuclear hormone receptor CHR3 is a critical regulator of all four larval molts of the nematode Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 98, 7360–7365 (2001).

    Article  CAS  Google Scholar 

  36. Crossgrove, K., Laudet, V. & Maina, C.V. Dirofilaria immitis encodes Di-nhr-7, a putative orthologue of the Drosophila ecdysone-regulated E78 gene. Mol. Biochem. Parasitol. 119, 169–177 (2002).

    Article  CAS  Google Scholar 

  37. Willnow, T.E., Nykjaer, A. & Herz, J. Lipoprotein receptors: new roles for ancient proteins. Nature Cell Biol. 1, E157–E162 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the T.V.K. lab and C. Thiele (Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany) for helpful discussions, and W. Wood (University of Colorado, Boulder, CO) for comments on the manuscript. S.W. thanks the Alexander von Humboldt Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teymuras V. Kurzchalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurzchalia, T., Ward, S. Why do worms need cholesterol?. Nat Cell Biol 5, 684–688 (2003). https://doi.org/10.1038/ncb0803-684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0803-684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing