Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Navigating gene expression using microarrays — a technology review

Abstract

Parallel quantification of large numbers of messenger RNA transcripts using microarray technology promises to provide detailed insight into cellular processes involved in the regulation of gene expression. This should allow new understanding of signalling networks that operate in the cell and of the molecular basis and classification of disease. But can the technology deliver such far-reaching promises?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic overview of probe array and target preparation for spotted cDNA microarrays and high-density oligonucleotide microarrays.
Figure 2: Different approaches towards microarray experiments in cell biology.

References

  1. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  2. Wodicka, L., Dong, H., Mittmann, M., Ho, M. H. & Lockhart, D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359–1367 (1997).

    Article  CAS  Google Scholar 

  3. Kane, M. D. et al. Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res. 28, 4552–4557 (2000).

    Article  CAS  Google Scholar 

  4. Luo, L. et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nature Med. 5, 117–122 (1999).

    Article  CAS  Google Scholar 

  5. Brady, G. Expression profiling of single mammalian cells — small is beautiful. Yeast 17, 211–217 (2000).

    Article  CAS  Google Scholar 

  6. Stears, R. L., Getts, R. C. & Gullans, S. R. A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol. Genomics 3, 93–99 (2000).

    Article  CAS  Google Scholar 

  7. Lockhart, D. J. & Winzeler, E. A. Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000).

    Article  CAS  Google Scholar 

  8. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  9. Bustin, S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193 (2000).

    Article  CAS  Google Scholar 

  10. Cho, R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

    Article  CAS  Google Scholar 

  11. Cho, R. J. et al. Transcriptional regulation and function during the human cell cycle. Nature Genet. 27, 48–54 (2001).

    Article  CAS  Google Scholar 

  12. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  Google Scholar 

  13. Iyer, V. R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    Article  CAS  Google Scholar 

  14. Fambrough, D., McClure, K., Kazlauskas, A. & Lander, E. S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741 (1999).

    Article  CAS  Google Scholar 

  15. Brazma, A. & Vilo, J. Gene expression data analysis. FEBS Lett. 480, 17–24 (2000).

    Article  CAS  Google Scholar 

  16. Gaasterland, T. & Bekiranov, S. Making the most of microarray data. Nature Genet. 24, 204–206 (2000).

    Article  CAS  Google Scholar 

  17. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  18. Toronen, P., Kolehmainen, M., Wong, G. & Castren, E. Analysis of gene expression data using self-organizing maps. FEBS Lett. 451, 142–146 (1999).

    Article  CAS  Google Scholar 

  19. Brown, M. P. et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl Acad. Sci. USA 97, 262–267 (2000).

    Article  CAS  Google Scholar 

  20. Roth, F. P., Hughes, J. D., Estep, P. W. & Church, G. M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnol. 16, 939–945 (1998).

    Article  CAS  Google Scholar 

  21. Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. & Church, G. M. Systematic determination of genetic network architecture. Nature Genet. 22, 281–285 (1999).

    Article  CAS  Google Scholar 

  22. Niehrs, C. & Pollet, N. Synexpression groups in eukaryotes. Nature 402, 483–487 (1999).

    Article  CAS  Google Scholar 

  23. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  Google Scholar 

  24. Iyer, V. R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).

    Article  CAS  Google Scholar 

  25. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  26. Marton, M. J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med. 4, 1293–1301 (1998).

    Article  CAS  Google Scholar 

  27. Brazma, A., Robinson, A., Cameron, G. & Ashburner, M. One-stop shop for microarray data. Nature 403, 699–700 (2000).

    Article  CAS  Google Scholar 

  28. Shoemaker, D. D. et al. Experimental annotation of the human genome using microarray technology. Nature 409, 922–927 (2001).

    Article  CAS  Google Scholar 

  29. Sallinen, S. L. et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res. 60, 6617–6622 (2000).

    CAS  Google Scholar 

  30. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  Google Scholar 

  31. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  Google Scholar 

  32. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000).

    Article  CAS  Google Scholar 

  33. Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA 96, 6745–6750 (1999).

    Article  CAS  Google Scholar 

  34. Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet. 24, 227–235 (2000).

    Article  CAS  Google Scholar 

  35. Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236–244 (2000).

    Article  CAS  Google Scholar 

  36. Schulze, A., Lehmann, K., Jefferies, H. B. J., McMahon, M. & Downward, J. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 15, 981–994 (2001).

    Article  CAS  Google Scholar 

  37. Clark, E. A., Golub, T. R., Lander, E. S. & Hynes, R. O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  Google Scholar 

  38. Pollack, J. R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet. 23, 41–46 (1999).

    Article  CAS  Google Scholar 

  39. Chen, Y. W., Zhao, P., Borup, R. & Hoffman, E. P. Expression profiling in the muscular dystrophies. Identification of novel aspects of molecular pathophysiology. J. Cell Biol. 151, 1321–1336 (2000).

    Article  CAS  Google Scholar 

  40. Ginsberg, S. D., Hemby, S. E., Lee, V. M., Eberwine, J. H. & Trojanowski, J. Q. Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann. Neurol. 48, 77–87 (2000).

    Article  CAS  Google Scholar 

  41. Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A. & Levitt, P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53–67 (2000).

    Article  CAS  Google Scholar 

  42. Geiss, G. K. et al. Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays. Virology 266, 8–16 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schulze, A., Downward, J. Navigating gene expression using microarrays — a technology review. Nat Cell Biol 3, E190–E195 (2001). https://doi.org/10.1038/35087138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing