Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Centriole biogenesis: a tale of two pathways

Two recent studies in Drosophila demonstrate that overexpression of proteins required for centriole duplication can not only induce centriole over-duplication in cells containing centrioles, but can also drive de novo centriole assembly in unfertilized eggs that initially lack centrioles. These studies offer a new perspective on the mechanisms that control centriole duplication.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Effects of Sak/Plk4 overexpression in different cell types.
Figure 2: Mechanisms of centriole reduplication when Sak/Plk4 or Sas6 are overexpressed.

References

  1. Nigg, E. A. International Journal of Cancer 119, 2717–2723 (2006).

    Google Scholar 

  2. Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D. M. & Bettencourt-Dias, M. Science 316, 1046–1050 (2007).

    CAS  Article  Google Scholar 

  3. Peel, N., Stevens, N. R., Basto, R. & Raff, J. W. Curr. Biol. 17, 834–843 (2007).

    CAS  Article  Google Scholar 

  4. Bettencourt-Dias, M. et al. Curr. Biol. 15, 2199–2207 (2005).

    CAS  Article  Google Scholar 

  5. Habedank, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. Nature Cell Biol. 7, 1140–1146 (2005).

    Article  Google Scholar 

  6. Delattre, M., Canard, C. & Gonczy, P. Curr. Biol. 16, 1844–1849 (2006).

    CAS  Article  Google Scholar 

  7. Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A. & Muller-Reichert,T. Nature 444, 619–623 (2006).

    CAS  Article  Google Scholar 

  8. Tsou, M. F. & Stearns, T. Nature 442, 947–951 (2006).

    CAS  Article  Google Scholar 

  9. Szollosi, D., Calarco, P. & Donahue, R. P. J. Cell Sci. 11, 521–541 (1972).

    CAS  PubMed  Google Scholar 

  10. Uetake, Y. et al. J. Cell Biol. 176, 173–182 (2007).

    CAS  Article  Google Scholar 

  11. La Terra, S. et al. J. Cell Biol. 168, 713–720 (2005).

    CAS  Article  Google Scholar 

  12. Duensing, A. et al. Oncogene doi:10.1038/sj.onc.1210456 (2007).

  13. Nigg, E. A. Trends Cell Biol. 17, 215–221 (2007).

    CAS  Article  Google Scholar 

  14. Dammermann, A. et al. Dev. Cell 7, 815–829 (2004).

    CAS  Article  Google Scholar 

  15. Young, A., Dictenberg, J. B., Purohit, A., Tuft, R. & Doxsey, S. J. Mol. Biol. Cell 11, 2047–2056 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Loncarek, J., Sluder, G. & Khodjakov, A. Centriole biogenesis: a tale of two pathways. Nat Cell Biol 9, 736–738 (2007). https://doi.org/10.1038/ncb0707-736

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0707-736

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing