Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes

An Erratum to this article was published on 01 July 2001

Abstract

Specific recognition of phosphoinositides is crucial for protein sorting and membrane trafficking. Protein transport to the yeast vacuole depends on the Vam7 t-SNARE and its phox homology (PX) domain. Here, we show that the PX domain of Vam7 targets to vacuoles in vivo in a manner dependent on phosphatidylinositol 3-phosphate generation. A novel phosphatidylinositol-3-phosphate-binding motif and an exposed loop that interacts with the lipid bilayer are identified by nuclear magnetic resonance spectroscopy. Conservation of key structural and binding site residues across the diverse PX family indicates a shared fold and phosphoinositide recognition function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphatidylinositol 3-phosphate-dependent localization of GFP–Vam7 by fluorescence microscopy.
Figure 2: Specific phosphatidylinositol 3-phosphate (PtdIns(3)P) recognition by the Vam7 phox homology (PX) domain.
Figure 3: Identification of residues involved in specific phosphatidylinositol 3-phosphate (PtdIns(3)P) ligation.
Figure 4: Lipid micelle interactions of the Vam7 phox homology (PX) domain.
Figure 5: Alignment of phox homology (PX) domain sequences.

Similar content being viewed by others

References

  1. Ponting, C. P. Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains? Protein Sci. 5, 2353–2357 (1996).

    Article  CAS  Google Scholar 

  2. Noack, D. et al. Autosomal recessive chronic granulomatous disease caused by defects in NCF-1, the gene encoding the phagocyte p47-phox: mutations not arising in the NCF-1 pseudogenes. Blood 97, 305–311 (2001).

    Article  CAS  Google Scholar 

  3. Sato, T. K., Darsow, T. & Emr, S. D. Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol. Cell Biol. 18, 5308–5319 (1998).

    Article  CAS  Google Scholar 

  4. Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).

    Article  CAS  Google Scholar 

  5. Gary, J. D., Wurmser, A. E., Bonangelino, C. J., Weisman, L. S. & Emr, S. D. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J. Cell Biol. 143, 65–79 (1998).

    Article  CAS  Google Scholar 

  6. Cooke, F. T. et al. The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr. Biol. 8, 1219–1222 (1998).

    Article  CAS  Google Scholar 

  7. Stack, J. H., DeWald, D. B., Takegawa, K. & Emr, S. D. Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J. Cell Biol. 129, 321–334 (1995).

    Article  CAS  Google Scholar 

  8. Weimbs, T. et al. A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc. Natl Acad. Sci. USA 94, 3046–3051 (1997).

    Article  CAS  Google Scholar 

  9. Fasshauer, D., Eliason, W. K., Brunger, A. T. & Jahn, R. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37, 10354–10362 (1998).

    Article  CAS  Google Scholar 

  10. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  11. Babst, M., Sato, T. K., Banta, L. M. & Emr, S. D. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J. 16, 1820–1831 (1997).

    Article  CAS  Google Scholar 

  12. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 (1998).

    Article  CAS  Google Scholar 

  13. Gaullier, J. M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).

    Article  CAS  Google Scholar 

  14. Patki, V., Lawe, D. C., Corvera, S., Virbasius, J. V. & Chawla, A. A functional PtdIns(3)P-binding motif. Nature 394, 433–434 (1998).

    Article  CAS  Google Scholar 

  15. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  Google Scholar 

  16. Dowler, S., Currie, R. A., Downes, C. P. & Alessi, D. R. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem. J. 342, 7–12 (1999).

    Article  CAS  Google Scholar 

  17. Kutateladze, T. G. et al. Phosphatidylinositol 3-phosphate recognition by the FYVE domain. Mol. Cell 3, 805–811 (1999).

    Article  CAS  Google Scholar 

  18. Gaullier, J. M., Ronning, E., Gillooly, D. J. & Stenmark, H. Interaction of the EEA1 FYVE finger with phosphatidylinositol 3-phosphate and early endosomes. Role of conserved residues. J. Biol. Chem. 275, 24595–24600 (2000).

    Article  CAS  Google Scholar 

  19. Phillips, S. A., Barr, V. A., Haft, D. H., Taylor, S. I. & Renfrew, C. Identification and characterization of SNX15, a novel sorting nexin involved in protein trafficking. J. Biol. Chem. 276, 5074–5084 (2001).

    Article  CAS  Google Scholar 

  20. Kurten, R. C. et al. Self-assembly and binding of a sorting nexin to sorting endosomes. J. Cell. Sci. 114, 1743–1756 (2001).

    CAS  PubMed  Google Scholar 

  21. Liu, D., Yang, X. & Songyang, Z. Identification of CISK, a new member of the SGK kinase family that promotes IL-3-dependent survival. Curr. Biol. 10, 1233–1236 (2000).

    Article  CAS  Google Scholar 

  22. Domin, J., Gaidarov, I., Smith, M. E., Keen, J. H. & Waterfield, M. D. The class II phosphoinositide 3-kinase PI3K-C2α is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J. Biol. Chem. 275, 11943–11950 (2000).

    Article  CAS  Google Scholar 

  23. Yokozeki, T., Kuribara, H., Katada, T., Touhara, K. & Kanaho, Y. Partially purified RhoA-stimulated phospholipase D activity specifically binds to phosphatidylinositol 4,5-bisphosphate. J. Neurochem. 66, 1234–1239 (1996).

    Article  CAS  Google Scholar 

  24. Hoer, A., Cetindag, C. & Oberdisse, E. Influence of phosphatidylinositol 4,5-bisphosphate on human phospholipase D1 wild-type and deletion mutants: is there evidence for an interaction of phosphatidylinositol 4,5-bisphosphate with the putative pleckstrin homology domain? Biochim. Biophys. Acta 1481, 189–201 (2000).

    Article  CAS  Google Scholar 

  25. Hodgkin, M. N. et al. Phospholipase D regulation and localisation is dependent upon a phosphatidylinositol 4,5-bisphosphate-specific PH domain. Curr. Biol. 10, 43–46 (2000).

    Article  CAS  Google Scholar 

  26. Kim, Y. et al. Phosphorylation and activation of phospholipase D1 by protein kinase C in vivo: determination of multiple phosphorylation sites. Biochemistry 38, 10344–10351 (1999).

    Article  CAS  Google Scholar 

  27. Kutateladze, T. & Overduin, M. Structural mechanism of endosome docking by the FYVE domain. Science 291, 1793–1796 (2001).

    Article  CAS  Google Scholar 

  28. Harlan, J. E., Hajduk, P. J., Yoon, H. S. & Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371, 168–170 (1994).

    Article  CAS  Google Scholar 

  29. Ferguson, K. M. et al. Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol. Cell 6, 373–384 (2000).

    Article  CAS  Google Scholar 

  30. Sutton, R. B., Ernst, J. A. & Brunger, A. T. Crystal structure of the cytosolic C2A–C2B domains of synaptotagmin III. Implications for Ca2+-independent snare complex interaction. J. Cell. Biol. 147, 589–598 (1999).

    Article  CAS  Google Scholar 

  31. Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051 (2001).

    Article  CAS  Google Scholar 

  32. Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    Article  CAS  Google Scholar 

  33. Kay, L. E. Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog. Biophys. Mol. Biol. 63, 277–299 (1995).

    Article  CAS  Google Scholar 

  34. Wishart, D. S. & Sykes, B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171–180 (1994).

    Article  CAS  Google Scholar 

  35. Vuister, G. W. & Bax, A. Quantitative J correlation – a new approach for measuring homonuclear 3-bond JHNHα coupling constants in 15N enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  36. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  37. Lukin, J. A., Gove, A. P., Talukdar, S. N. & Ho, C. Automated probabilistic method for assigning backbone resonances of (13C,15N)-labeled proteins. J. Biomol. NMR 9, 151–166 (1997).

    Article  CAS  Google Scholar 

  38. Cowles, C. R., Odorizzi, G., Payne, G. S. & Emr, S. D. The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 91, 109–118 (1997).

    Article  CAS  Google Scholar 

  39. Grzesiek, S. et al. The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Nature Struct. Biol. 3, 340–345 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. G. S. Capelluto, J. L. Enmon, D. N. M. Jones and A. E. Wurmser for discussions and L. E. Kay for pulse sequences. We also thank C. Sette, P. Iaquinta, J. Thorner, X. Song, W. Xu, A. Zhang, G. Huang, X. Liang, J. V. Virbasius, M. P. Czech and G. W. Zhou for sharing unpublished data. We are supported by the Pew Scholars Program, University of Colorado Cancer Center and University of Colorado Health Sciences Center NMR Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Overduin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheever, M., Sato, T., de Beer, T. et al. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nat Cell Biol 3, 613–618 (2001). https://doi.org/10.1038/35083000

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing