Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

To be or not to be in the nucleolus

Abstract

Compartmentalization has long been known to have a key role in regulation of cellular processes. By keeping enzymes and regulatory complexes in compartments where the delivery of substrate or exit of product is controlled, competing reactions can occur simultaneously in different parts of the cell. Moreover, spatial confinement facilitates the working of molecules participating in reaction chains and is crucial for coupling unfavourable with energetically favourable chemical reactions. Although in many cases intracellular compartmentalization relies on boundaries imposed by membranes, several non-membrane-bounded compartments exist in eukaryotic cells. One of these, the nucleolus, has recently attracted much attention. The emerging view is that molecular confinement in the nucleolus actively contributes to the control of cellular survival and proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kaffman, A. & O’Shea, E. K. Regulation of nuclear localization: a key to a door. Annu. Rev. Cell Dev. Biol. 15, 291–339 (1999).

    Article  CAS  Google Scholar 

  2. Görlich, D, & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    Article  Google Scholar 

  3. Tomoda, K., Kubota, Y. & Kato, J. Degradation of the cyclin-dependent-kinase inhibitor p27/Kip1 is instigated by Jab1. Nature 398, 160–165 (1999).

    Article  CAS  Google Scholar 

  4. Kaffman, A., Rank, N. M., O’Neill, E. M., Huang, L. S. & O’Shea, E. K. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396, 482–486 (1998).

    Article  CAS  Google Scholar 

  5. Lopez-Girona, A., Furnari, B., Mondesert, O. & Russell, P. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397, 172–175 (1999).

    Article  CAS  Google Scholar 

  6. Zhu, J. & McKeon, F. NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature 398, 256–260 (1999).

    Article  CAS  Google Scholar 

  7. Topham, M. K., Bunting, M., Zimmerman, G. A., McIntyre, T. M., Blackshear, P. J. & Prescott, S. M. Protein kinase C regulates the nuclear localization of diacylglycerol kinase-zeta. Nature 394, 697–700 (1998).

    Article  CAS  Google Scholar 

  8. Spector, D. L. Macromolecular domains within the cell nucleus. Annu. Rev. Cell Biol. 9, 265–315 (1993).

    Article  CAS  Google Scholar 

  9. Leonhardt, H. & Cardoso, M. C. Targeting and association of proteins with functional domains in the nucleus: the insoluble solution. Int. Rev. Cytol. 162 B, 303–335 (1995).

    Google Scholar 

  10. Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547–553 (1998).

    Article  CAS  Google Scholar 

  11. Hadjiolov, A. A. The Nucleolus and Ribosome Biogenesis. Cell Biology Monographs Vol. 12 (Springer Verlag, Wien/New York, 1985).

  12. Shaw, P. J. & Jordan, E. G. The nucleolus. Annu. Rev. Cell Dev. Biol. 11, 93–121 (1995).

    Article  CAS  Google Scholar 

  13. Scheer, U. & Hock, R. Structure and function of the nucleolus. Curr. Opin. Cell Biol. 11, 385–390 (1999).

    Article  CAS  Google Scholar 

  14. Tollervey, D., Lehtonen, H., Carmo-Fonseca, M. & Hurt, E. C. The small nucleolar RNP protein NOP 1 (fibrillarin) is required for pre-rRNA processing in yeast. EMBO J. 10, 573–583 (1991).

    Article  CAS  Google Scholar 

  15. Moy, T. I. & Silver, P. A. Nuclear export of the small ribosomal subunit requires the Ran-GTPase cycle and certain nucleoporins. Genes Dev. 13, 2118–2133 (1999).

    Article  CAS  Google Scholar 

  16. Hurt, E., Hannus, S., Schmelzl, B., Lau, D., Tollervey, D. & Simos, G. A novel in vivo assay reveals inhibition of ribosomal nuclear export in Ran-cycle and nucleoporin mutants. J. Cell Biol. 144, 389–401 (1999).

    Article  CAS  Google Scholar 

  17. Mélèse, T. & Xue, Z. The nucleolus: an organelle formed by the act of building a ribosome. Curr. Opin. Cell Biol. 7, 319–324 (1995).

    Article  Google Scholar 

  18. Léger-Silvestre, I., Noaillac-Depeyre, J., Faubladier, M. & Gas, N. Structural and functional analysis of the nucleolus of the fission yeast Schizosaccharomyces pombe. Eur. J. Cell Biol. 72, 13–23 (1997).

    PubMed  Google Scholar 

  19. Léger-Silvestre, I., Trumtel, S., Noaillac-Depeyre, J. & Gas, N. Functional compartmentalization of the nucleolus in the budding yeast Saccharomyces cerevisiae. Chromosoma 108, 103–113 (1999).

    Article  Google Scholar 

  20. Scheer, U. & Weisenberger, D. The nucleolus. Curr. Opin. Cell Biol. 6, 354–359 (1994).

    Article  CAS  Google Scholar 

  21. Nierras, C. R., Liebman, S. W. & Warner, J. R. Does Saccharomyces need an organized nucleolus? Chromosoma 105, 444–451 (1997).

    CAS  PubMed  Google Scholar 

  22. Oakes, M., Aris, J. P., Brockenbrough, J. S., Wai, H., Vu, L. & Nomura, M. Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J. Cell Biol. 143, 23–34 (1998).

    Article  CAS  Google Scholar 

  23. Trumtel, S., Léger-Silvestre, I., Gleizes, P.-E., Teulières, F. & Gas, N. Assembly and functional organization of the nucleolus: ultrastructural analysis of Saccharomyces cerevisiae mutants. Mol. Biol. Cell (in the press).

  24. Woolford, J. L., & Warner, J. R. The ribosome and its synthesis. In The Molecular and Cellular Biology of the Yeast Saccharomyces, (eds Broach, J.R., Pringle, J.R. & Jones, E.W.) 587-626 (Cold Spring Harbor Laboratory Press, New York, 1991).

  25. Cockell, M., & Gasser, S. M. Nuclear compartments and gene regulation. Curr. Opin. Genet. Dev. 9, 199–205 (1999).

    Article  CAS  Google Scholar 

  26. Gotta, M., Strahl-Bolsinger, S., Renauld, H., Laroche, T., Kennedy, B. K., Grunstein, M. & Gasser, S. M. Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J. 16, 3245–3255 (1997).

    Article  Google Scholar 

  27. Lustig, A. J. Mechanisms of silencing in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 8, 233–239 (1998).

    Article  CAS  Google Scholar 

  28. Straight, A. F., Shou, W., Dowd, G. J., Turck, C. W., Deshaies, R. J., Johnson, A. D. & Moazed, D. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97, 245–256 (1999).

    Article  CAS  Google Scholar 

  29. Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325–328 (1998).

    Article  CAS  Google Scholar 

  30. Pluta, A. F., Mackay, A. M., Ainsztein, A. M., Goldberg, I. G. & Earnshaw, W. C. The centromere: hub of chromosomal activities. Science 270, 1591–1594 (1995).

    Article  CAS  Google Scholar 

  31. Dammann, R., Lucchini, R., Koller, T. & Sogo, J. M. Transcription in the yeast rDNA locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol. Cell. Biol. 15, 5294–5303 (1995).

    Article  CAS  Google Scholar 

  32. Brachmann, C. B., Sherman, J. M., Devine, S. E., Cameron, E. E., Pillus, L. & Boeke, J. D. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9, 2888–2902 (1995).

    Article  CAS  Google Scholar 

  33. Frye, R. A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260, 273–279 (1999).

    Article  CAS  Google Scholar 

  34. Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99, 735–745 (1999).

    Article  CAS  Google Scholar 

  35. Imai, S.-I., Armstrong, C. M., Kaeberlein, M. & Guarante, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    Article  CAS  Google Scholar 

  36. Perrin, L., Romby, P., Laurenti, P., Bérenger, H., Kallenbach, S., Bourbon, H.-M. & Pradel, J. The Drosophila modifier of variegation modulo gene product binds specific RNA sequences at the nucleolus and interacts with DNA and chromatin in a phosphorylation-dependent manner. J. Biol. Chem. 274, 6315–6323 (1999).

    Article  CAS  Google Scholar 

  37. Dietzel, S., Niemann, H., Brückner, B., Maurange, C. & Paro, R. The nuclear distribution of Polycomb during Drosophila melanogaster development shown with a GFP fusion protein. Chromosoma 108, 83–94 (1999).

    Article  CAS  Google Scholar 

  38. Bridger, J. M., Kill, I. R. & Lichter, P. Association of pKi-67 with satellite DNA of the human genome in early G1 cells. Chromosome Res. 6, 13–24 (1998).

    Article  CAS  Google Scholar 

  39. Jacobson, M. R., Cao, L.-G., Wang, Y.-L. & Pederson, T. Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells. J. Cell Biol. 131, 1649–1658 (1995).

    Article  CAS  Google Scholar 

  40. Sinclair, D. A. & Guarante, L. Extrachromosomal rDNA circles: a cause of aging in yeast. Cell 91, 1033–1042 (1997).

    Article  CAS  Google Scholar 

  41. Kennedy, B.K. et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89, 381–391 (1997).

    Article  CAS  Google Scholar 

  42. Park, P. U., Defossez, P.-A., & Guarente, L. Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 3848–3856 (1999).

    Article  CAS  Google Scholar 

  43. Epstein, C. J., Martin, G. M., Schultz, A. L. & Motulsky, A. G. Werner’s syndrome: a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 45, 177–221 (1966).

    Article  CAS  Google Scholar 

  44. Grey, M. D., Wang, L., Youssoufian, H., Martin, G. M. & Oshima, J. Werner’syndrome helicase is localized to transcriptionally active nucleoli of cycling cells. Exp. Cell Res. 242, 487–494 (1999).

    Article  Google Scholar 

  45. Marciniak, R. A., Lombard, D. B., Johnson, F. B. & Guarante, L. Nucleolar localization of the Werner syndrome protein in human cells. Proc. Natl Acad. Sci. USA 95, 6887–6892 (1998).

    Article  CAS  Google Scholar 

  46. Shiratori, M. et al. Detection by epitope-defined monoclonal antibodies of Werner DNA helicases in the nucleoplasm and their upregulation by cell transformation and immortalization. J. Cell Biol. 144, 1–9 (1999).

    Article  CAS  Google Scholar 

  47. Paule, M. R. Transcription of Ribosomal RNA Genes by Eukaryotic RNA Polymerase I (Springer-Verlag, Berlin/Heidelberg, 1998).

  48. Rose, K. M., Szopa, J., Han, F.-S., Cheng, Y.-C., Richter, A. & Scheer, U. Association of DNA topoisomerase I and RNA polymerase I: a possible role for topoisomerase I in ribosomal gene transcription. Chromosoma 96, 411–416 (1988).

    Article  CAS  Google Scholar 

  49. Vogelauer, M. & Camilloni, G. Site-specific in vivo cleavages by DNA topoisomerase I in the regulatory regions of the 35 S rRNA in Saccharomyces cerevisiae are transcription independent. J. Mol. Biol. 293, 19–28 (1999).

    Article  CAS  Google Scholar 

  50. Banditt, M., Koller, T. & Sogo, J. Transcriptional activity and chromatin structure of enhancer-deleted rRNA genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4953–4960 (1999).

    Article  CAS  Google Scholar 

  51. Milkereit, P. & Tschochner, H. A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription. EMBO J. 17, 3692–3703 (1998).

    Article  CAS  Google Scholar 

  52. Heix, J., Vente, A., Voit, R., Budde, A., Michaelidis, T. M. & Grummt, I. Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J. 17, 7373–7381 (1998).

    Article  CAS  Google Scholar 

  53. Tuan, J. C., Zhai, W. & Comai, L. Recruitment of TATA-binding protein-TAFI complex SL1 to the human ribosomal DNA promoter is mediated by the carboxy-terminal activation domain of upstream binding factor (UBF) and is regulated by UBF phosphorylation. Mol. Cell. Biol. 19, 2872–2879 (1999).

    Article  CAS  Google Scholar 

  54. Voit, R., Hoffmann, M. & Grummt, I. Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J. 18, 1891–1899 (1999).

    Article  CAS  Google Scholar 

  55. Maxwell, E. S. & Fournier, M. J. The small nucleolar RNAs. Annu. Rev. Biochem. 35, 897–934 (1995).

    Article  Google Scholar 

  56. Tollervey, D. & Kiss, T. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol. 9, 337–342 (1997).

    Article  CAS  Google Scholar 

  57. Smith, C. M. & Steitz, J. A. Sno storm in the nucleolus: new roles for myriad small RNPs Cell 89, 669–672 (1997).

    Article  CAS  Google Scholar 

  58. Olson, M. O., Dundr, M. & Szebeni, A. The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol. 10, 189–196 (2000).

    Article  CAS  Google Scholar 

  59. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′–5′ exoribonuclease activities. Cell 91, 457–466 (1997).

    Article  CAS  Google Scholar 

  60. Allmang, C., Kufel, J., Chanfreau, G., Mitchell, P., Petfalski, E. & Tollervey, D. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18, 5399–5410 (1999).

    Article  CAS  Google Scholar 

  61. Fomproix, N. & Hernandez-Verdun, D. Effects of anti-PM-Scl100 (Rrp6p exonuclease) antibodies on prenucleolar body dynamics at the end of mitosis. Exp. Cell Res. 251, 452–464 (1999).

    Article  CAS  Google Scholar 

  62. Pederson, T. & Politz, J. C. The nucleolus and the four ribonucleoproteins of translation. J. Cell Biol. 148, 1091–1095 (2000).

    Article  CAS  Google Scholar 

  63. Dechampesme, A.-M., Koroleva, O., Léger-Silvestre, I., Gas, N. & Camier, S. Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway. J. Cell Biol. 145, 1369–1380 (1999).

    Article  CAS  Google Scholar 

  64. Wolin, S. L. & Matera, G. The trials and travels of tRNA. Genes Dev. 13, 1–10 (1999).

    Article  CAS  Google Scholar 

  65. Tycowski, K. T., You, Z. H., Graham, P. J. & Steitz, J. A. Modification of U6 spliceosomal RNA is guided by other small RNAs. Mol. Cell 2, 629–638 (1998).

    Article  CAS  Google Scholar 

  66. Ganot, P., Jády, B. E., Bortolin, M.-L., Darzacq, X. & Kiss, T. Nucleolar factors direct the 2′-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol. Cell. Biol. 19, 6906–6917 (1999).

    Article  CAS  Google Scholar 

  67. Visintin, R., Hwang, E. S. & Amon, A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398, 818–823 (1999).

    Article  CAS  Google Scholar 

  68. Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233–244 (1999).

    Article  CAS  Google Scholar 

  69. Deshaies, R. J. Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast. Curr. Opin. Genet. Dev. 7, 7–16 (1997).

    Article  CAS  Google Scholar 

  70. Morgan, D. O. Cyclin-dependent kinases: engines, clocks and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    Article  CAS  Google Scholar 

  71. Visintin, R., Craig, K., Hwang, E. S., Prinz, S., Tyers, M. & Amon, A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709–718 (1998).

    Article  CAS  Google Scholar 

  72. Zachariae, W, Schwab, M, Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoter complex. Science 282, 1721–1724 (1998).

    Article  CAS  Google Scholar 

  73. San-Segundo, P. A. & Roeder, G. S. Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97, 313–324 (1999).

    Article  CAS  Google Scholar 

  74. Pederson, T. Growth factors in the nucleolus? J. Cell Biol. 143, 279–281 (1998).

    Article  CAS  Google Scholar 

  75. Zatsepina, O. V., Rousselet, A., Chan, P. K., Olson, M. O., Jordan, E. G & Bornens, M. The nucleolar phosphoprotein B23 redistributes in part to the spindle poles during mitosis. J. Cell Sci. 112, 455–466 (1999).

    CAS  PubMed  Google Scholar 

  76. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).

    Article  CAS  Google Scholar 

  77. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupts its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Cell 3, 579–591 (1999).

    CAS  Google Scholar 

  78. Tao, W. & Levine, A. J. P 19ARF stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl Acad. Sci. USA 96, 6937–6941 (1999).

    Article  CAS  Google Scholar 

  79. Lohrun, M. A. E., Ashcroft, M., Kubbutat, M. H. G. & Vousden, K.H. Identification of a cryptic nucleolar-localization signal in MDM2. Nature Cell Biol. 2, 179–181 (2000).

    Article  Google Scholar 

  80. Kamijo, T. et al.Tumour suppression at the mouse INK4a locus mediated by the alternative reading frame product p19 ARF. Cell 91, 649–659 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Pederson, D. Tollervey and U. Scheer for valuable comments on the manuscript and to our colleagues who communicated data prior to publication. M.C-F. is supported by grants from Fundação para a Ciência e Tecnologia/PRAXIS XXI. I.C. is a fellow of the Gulbenkian PhD programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carmo-Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmo-Fonseca, M., Mendes-Soares, L. & Campos, I. To be or not to be in the nucleolus. Nat Cell Biol 2, E107–E112 (2000). https://doi.org/10.1038/35014078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing