Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discrete interactions in cell adhesion measured by single-molecule force spectroscopy

Abstract

Cell–cell adhesion mediated by specific cell-surface molecules is essential for multicellular development. Here we quantify de-adhesion forces at the resolution of individual cell-adhesion molecules, by controlling the interactions between single cells and combining single-molecule force spectroscopy with genetic manipulation. Our measurements are focused on a glycoprotein, contact site A (csA), as a prototype of cell-adhesion proteins. csA is expressed in aggregating cells of Dictyostelium discoideum, which are engaged in development of a multicellular organism. Adhesion between two adjacent cell surfaces involves discrete interactions characterized by an unbinding force of 23 ± 8 pN, measured at a rupture rate of 2.5 ± 0.5 µm s–1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Force spectroscopy of adhesion between individual D. discoideum cells.
Figure 2: Force spectra for Ca2+-dependent adhesion between cells in the growth phase.
Figure 3: Force spectra for EDTA-stable adhesion of undeveloped and developed cells.
Figure 4: De-adhesion forces for lipid-anchored csA and a transmembrane chimaera.

Similar content being viewed by others

References

  1. Vestweber, D. & Blanks, J. E. Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 79 , 181–213 (1999).

    Article  CAS  Google Scholar 

  2. Fritz, J., Katopodis, A. G., Kolbinger, F. & Anselmetti, D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl Acad. Sci. USA 95, 12283–12288 (1998).

    Article  CAS  Google Scholar 

  3. Springer, T. A. Adhesion receptors of the immune system. Nature 346 , 425–434 (1990).

    Article  CAS  Google Scholar 

  4. Kreis, T. & Vale, R. (eds) Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins (Oxford Univ. Press, 1999).

  5. Faix, J. in Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins (eds Kreis, T. & Vale, R.) 177–179 (Oxford Univ. Press, 1999).

  6. Ponte, E., Bracco, E., Faix, J. & Bozzaro, S. Detection of subtle phenotypes: the case of the cell adhesion molecule csA in Dictyostelium . Proc. Natl Acad. Sci. USA 95, 9360– 9365 (1998).

    Article  CAS  Google Scholar 

  7. Bozzaro, S. & Gerisch, G. Contact sites in aggregating cells of Polysphondylium pallidum. J. Mol. Biol. 120, 265–279 (1978).

    Article  CAS  Google Scholar 

  8. Gerisch, G., Krelle, H., Bozzarro, S., Eitle, E. & Guggenheim, R. in Cell Adhesion and Motility (eds Curtis, A. S. G. & Pitts, J. D.) 293–307 (Cambridge Univ. Press, Cambridge, UK, 1980).

  9. Murray, B. A., Yee, L. D. & Loomis, W. F. Immunological analysis of glycoprotein (contact sites A) involved in intercellular adhesion of Dictyostelium discoideum. J. Supramol. Struct. Cell. Biochem. 17, 197– 211 (1981).

    Article  CAS  Google Scholar 

  10. Beug, H., Katz, F. E. & Gerisch, G. Dynamics of antigenic membrane sites relating to cell aggregation in Dictyostelium discoideum. J. Cell Biol. 56, 647–658 (1973).

    Article  CAS  Google Scholar 

  11. Siu, C.H. et al. Molecular mechanisms of cell–cell interaction in Dictyostelium discoideum. Biochem. Cell Biol. 66, 1089–1099 (1988).

    Article  CAS  Google Scholar 

  12. Stadler, J., Keenan, T. W., Bauer, G. & Gerisch, G. The contact site A glycoprotein of Dictyostelium discoideum carries a phospholipid anchor of a novel type. EMBO J. 8, 371– 377 (1989).

    Article  CAS  Google Scholar 

  13. Barth, A., Müller-Taubenberger, A., Taranto, P. & Gerisch, G. Replacement of the phospholipid-anchor in the contact site A glycoprotein of Dictyostelium discoideum by a transmembrane region does not impede cell adhesion but reduces residence time on the cell surface. J. Cell Biol. 124, 205– 215 (1994).

    Article  CAS  Google Scholar 

  14. Evans, E. A. Detailed mechanics of membrane–membrane adhesion and separation II. Discrete kinetically trapped molecular cross-bridges. Biophys. J. 48, 185–192 ( 1985).

    Article  CAS  Google Scholar 

  15. Evans, E. in Structure and Dynamics of Membranes (eds Lipowsky, R. & Sackmann, E.) 723–754 (Elsevier, Amsterdam, 1995).

  16. Curtis, A. S. G. Problems and some solutions in the study of cellular aggregation. Symp. Zool. Soc. Lond. 25, 335–352 (1970).

    Google Scholar 

  17. Chen, S. & Springer, T. A. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J. Cell Biol. 144, 185– 200 (1999).

    Article  CAS  Google Scholar 

  18. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 ( 1986).

    Article  CAS  Google Scholar 

  19. Gimzewski, J. K. & Joachim, C. Nanoscale science of single molecules using local probes. Science 283 , 1683–1688 (1999).

    Article  CAS  Google Scholar 

  20. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science (in the press).

  21. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H. E. Single molecule force spectroscopy on polysaccharides by AFM. Science 275, 1295–1297 ( 1997).

    Article  CAS  Google Scholar 

  22. Marszalek, P. E. et al. Atomic levers control pyranose ring conformations. Proc. Natl Acad. Sci. USA 96, 7894– 7898 (1999).

    Article  CAS  Google Scholar 

  23. Rief, M., Gautel, M., Schemmel, A. & Gaub, H. E. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by AFM. Biophys. J. 75, 3008 –3014 (1998).

    Article  CAS  Google Scholar 

  24. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 ( 1998).

    Article  CAS  Google Scholar 

  25. Smith, B. L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761– 763 (1999).

    Article  CAS  Google Scholar 

  26. Rief, M., Clausen-Schaumann, H. & Gaub, H. E. Sequence-dependent mechanics of single DNA molecules . Nature Struct. Biol. 6, 346– 349 (1999).

    Article  CAS  Google Scholar 

  27. Strunz, T., Oroszlan, K., Schäfer, R. & Güntherodt, H-J. Dynamic force spectroscopy of single DNA molecules. Proc. Natl Acad. Sci. USA 96, 11277–11282 (1999).

    Article  CAS  Google Scholar 

  28. Moy, V. T., Florin, E-L. & Gaub, H. E. Intermolecular forces and energies between ligands and receptors. Science 266, 257–259 (1994).

    Article  CAS  Google Scholar 

  29. Florin, E-L., Moy, V. T. & Gaub, H. E. Adhesive forces between individual ligand-receptor pairs . Science 264, 415–417 (1994).

    Article  CAS  Google Scholar 

  30. Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy . Proc. Natl Acad. Sci. USA 93, 3477– 3481 (1996).

    Article  CAS  Google Scholar 

  31. Müller, K. M., Arndt, K. M. & Plückthun, A. Model and simulation of multivalent binding to fixed ligands. Anal. Biochem. 261, 149–158 ( 1998).

    Article  Google Scholar 

  32. Grubmüller, H., Heymann, B. & Tavan, P. Ligand binding: molecular mechanics calculation of the streptavidin–biotin rupture force. Science 271 , 997–999 (1996).

    Article  Google Scholar 

  33. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  34. Beug, H., Katz, F. E., Stein, A. & Gerisch, G. Quantitation of membrane sites in aggregating Dictyostelium cells by use of tritiated univalent antibody. Proc. Natl Acad. Sci. USA 70, 3150– 3154 (1973).

    Article  CAS  Google Scholar 

  35. Harloff, C., Gerisch, G. & Noegel, A. A. Selective elimination of the contact site A protein of Dictyostelium discoideum by gene disruption. Genes Dev. 3, 2011–2019 (1989).

    Article  CAS  Google Scholar 

  36. Faix, J., Gerisch, G. & Noegel, A. A. Overexpression of the csA cell adhesion molecule under its own cAMP-regulated promoter impairs morphogenesis in Dictyostelium . J. Cell Sci. 102, 203–214 (1992).

    CAS  PubMed  Google Scholar 

  37. Faix, J., Gerisch, G. & Noegel, A. A. Constitutive overexpression of the contact site A glycoprotein enables growth-phase cells of Dictyostelium discoideum to aggregate. EMBO J. 9, 2709–2716 ( 1990).

    Article  CAS  Google Scholar 

  38. Evans, E. Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. R. Soc. Chem: Faraday Discuss. 111, 1–16 ( 1998).

    CAS  Google Scholar 

  39. Tomschy, A., Fauser, C., Landwehr, R. & Engel, J. Homophilic adhesion of E-cadherin occurs by a co-operative two-step interaction of N-terminal domains. EMBO J. 15, 3507– 3514 (1996).

    Article  CAS  Google Scholar 

  40. Rief, M., Fernandez, J. M. & Gaub, H. E. Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764–4767 (1998).

    Article  CAS  Google Scholar 

  41. Evans, E., Berk, D. & Leung, A. Detachment of agglutinin bonded red blood cells I. Forces to rupture molecular point attachments. Biophys. J. 59, 838– 848 (1991).

    Article  CAS  Google Scholar 

  42. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  CAS  Google Scholar 

  43. Dettmann, W. et al. Differences in zero-force and force-driven kinetics of ligand dissociation from β-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy. Arch. Biochem. Biophys. (in the press).

  44. Kloboucek, A., Behrisch, A., Faix, J. & Sackmann, E. Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study . Biophys. J. 77, 2311– 2328 (1999).

    Article  CAS  Google Scholar 

  45. Malchow, D., Nägele, B., Schwarz, H. & Gerisch, G. Membrane-bound cyclic AMP phosphodiesterase in chemotactically responding cells of Dictyostelium discoideum. Eur. J. Biochem. 28, 136–142 (1972).

    Article  CAS  Google Scholar 

  46. Florin, E. L. et al. Sensing specific molecular interactions with the atomic force microscope. Biosensors Bioelectr. 10, 895 –901 (1995).

    Article  CAS  Google Scholar 

  47. Butt, H. J. & Jaschke, M. Thermal noise in atomic force microscopy . Nanotechnol. 6, 1–7 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Westphal and E. Simmeth for culturing Dictyostelium, and W. Dettmann for instrumentation and discussions. This work was supported by grants from the VW Foundation and the Deutsche Forschungsgemeinschaft..

Correspondence and requests for materials should be addressed to M.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Benoit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benoit, M., Gabriel, D., Gerisch, G. et al. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2, 313–317 (2000). https://doi.org/10.1038/35014000

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing