Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polarized epithelial membrane traffic: conservation and plasticity

Abstract

Most cells are polarized and have distinct plasma membrane domains, which are the result of polarized trafficking of proteins and lipids. Great progress has been made in elucidating the highly conserved polarized targeting machinery. A pre-eminent challenge now is to understand the plasticity of polarized traffic, how it is altered by differentiation and dedifferentiation during development, as well as the adaptation of differentiated cells to meet changing physiological needs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major trafficking pathways in polarized epithelial cells.
Figure 2: Regulation of pIgR transcytosis.
Figure 3: Developmental plasticity and orientation of epithelial polarity.
Figure 4: Alterations in membrane traffic as cells polarize.

Similar content being viewed by others

References

  1. Mostov, K.E., Verges, M. & Altschuler, Y. Membrane traffic in polarized epithelial cells. Curr. Opin. Cell Biol. 12, 483–490 (2000).

    CAS  PubMed  Google Scholar 

  2. Nelson, W.J. & Yeaman, C. Protein trafficking in the exocytic pathway of polarized epithelial cells. Trends Cell Biol. 11, 483–486 (2001).

    CAS  PubMed  Google Scholar 

  3. Stein, M., Wandinger-Ness, A. & Roitbak, T. Altered trafficking and epithelial cell polarity in disease. Trends Cell Biol. 12, 374–381 (2002).

    CAS  PubMed  Google Scholar 

  4. O'Brien, L.E., Zegers, M.M.P. & Mostov, K.E. Opinion: building epithelial architecture: insights from three-dimensional culture models. Nature Rev. Mol. Cell. Biol. 3, 531–537 (2002).

    CAS  Google Scholar 

  5. Kowalczyk, A.P. & Moses, K. Photoreceptor cells in flies and mammals: Crumby homology? Dev. Cell 2, 253–254 (2002).

    CAS  PubMed  Google Scholar 

  6. Jacob, R. & Naim, H.Y. Apical membrane proteins are transported in distinct vesicular carriers. Curr. Biol. 11, 1444–1450 (2001).

    CAS  PubMed  Google Scholar 

  7. Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nature Cell Biol. 5, 126–136 (2003).

    CAS  PubMed  Google Scholar 

  8. Orzech, E., Cohen, S., Weiss, A. & Aroeti, B. Interactions between the exocytic and endocytic pathways in polarized Madin-Darby canine kidney cells. J. Biol. Chem. 275, 15207–15219 (2000).

    CAS  PubMed  Google Scholar 

  9. Harris, B.Z. & Lim, W.A. Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci. 114, 3219–3231 (2001).

    CAS  PubMed  Google Scholar 

  10. Bastaki, M., Braiterman, L.T., Johns, D.C., Chen, Y.H. & Hubbard, A.L. Absence of direct delivery for single transmembrane apical proteins or their 'Secretory' forms in polarized hepatic cells. Mol. Biol. Cell 13, 225–237 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kipp, H. & Arias, I.M. Newly synthesized canalicular ABC transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver. J. Biol. Chem. 275, 15917–15925 (2000).

    CAS  PubMed  Google Scholar 

  12. Bomsel, M., Prydz, K., Parton, R.G., Gruenberg, J. & Simons, K. Endocytosis in filter-grown Madin-Darby canine kidney cells. J. Cell Biol. 109, 3243–3258 (1989).

    CAS  PubMed  Google Scholar 

  13. Rojas, R. & Apodaca, G. Immunoglobulin transport across polarized epithelial cells. Nature Rev. Mol. Cell Biol. 3, 944–956 (2002).

    CAS  Google Scholar 

  14. Sheff, D.R., Kroschewski, R. & Mellman, I. Actin dependence of polarized receptor recycling in Madin-Darby canine kidney cell endosomes. Mol. Biol. Cell 13, 262–275 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. van IJzendoorn, S.C. & Hoekstra, D. The subapical compartment: a novel sorting centre? Trends Cell Biol. 9, 144–149 (1999).

    CAS  PubMed  Google Scholar 

  16. van der Wouden, J.M., van IJzendoorn, S.C.D. & Hoekstra, D. Oncostatin M regulates membrane traffic and stimulates bile canalicular membrane biogenesis in HepG2 cells. EMBO J. 21, 6409–6418 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bomsel, M. et al. Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM. Immunity 9, 277–287 (1998).

    CAS  PubMed  Google Scholar 

  18. Vincent, J.P. & Dubois, L. Morphogen transport along epithelia, an integrated trafficking problem. Dev. Cell 3, 615–623 (2002).

    CAS  PubMed  Google Scholar 

  19. Mostov, K.E., de Bruyn Kops, A. & Deitcher, D.L. Deletion of the cytoplasmic domain of the polymeric immunoglobulin receptor prevents basolateral localization and endocytosis. Cell 47, 359–364 (1986).

    CAS  PubMed  Google Scholar 

  20. Casanova, J.E., Apodaca, G. & Mostov, K.E. An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor. Cell 66, 65–75 (1991).

    CAS  PubMed  Google Scholar 

  21. Koivisto, U.M., Hubbard, A.L. & Mellman, I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell 105, 575–585 (2001).

    CAS  PubMed  Google Scholar 

  22. Matter, K., Hunziker, W. & Mellman, I. Basolateral sorting of LDL receptor in MDCK cells: the cytoplasm domain contains two tyrosine-dependent targeting determinants. Cell 71, 741–753 (1992).

    CAS  PubMed  Google Scholar 

  23. Devonald, M.A., Smith, A.N., Poon, J.P., Ihrke, G. & Karet, F.E. Non-polarized targeting of AE1 causes autosomal dominant distal renal tubular acidosis. Nature Genet. 33, 125–127 (2003).

    CAS  PubMed  Google Scholar 

  24. Folsch, H., Ohno, H., Bonifacino, J.S. & Mellman, I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 99, 189–198 (1999).

    CAS  PubMed  Google Scholar 

  25. Folsch, H., Pypaert, M., Schu, P. & Mellman, I. Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J. Cell Biol. 152, 595–606 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gan, Y., McGraw, T.E. & Rodriguez-Boulan, E. The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nature Cell Biol. 4, 605–609 (2002).

    CAS  PubMed  Google Scholar 

  27. Aroeti, B. & Mostov, K.E. Polarized sorting of the polymeric immunoglobulin receptor in the exocytotic and endocytotic pathways is controlled by the same amino acids. EMBO J. 13, 2297–2304 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Matter, K., Whitney, J.A., Yamamoto, E.M. & Mellman, I. Common signals control low density lipoprotein receptor sorting in endosomes and the Golgi complex of MDCK cells. Cell 74, 1053–1064 (1993).

    CAS  PubMed  Google Scholar 

  29. Simmen, T., Honing, S., Icking, A., Tikkanen, R. & Hunziker, W. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nature Cell Biol. 4, 154–159 (2002).

    CAS  PubMed  Google Scholar 

  30. Simons, K. & Ikonen, E. How cells handle cholesterol. Science 290, 1721–1726 (2000).

    CAS  PubMed  Google Scholar 

  31. Weimbs, T., Low, S.-H., Chapin, S.J. & Mostov, K.E. Apical targeting in polarized epithelial cells: there's more afloat than rafts. Trends Cell Biol. 7, 393–399 (1997).

    CAS  PubMed  Google Scholar 

  32. Sarnataro, D. et al. PrPC is sorted to the basolateral membrane of epithelial cells independently of its association with rafts. Traffic 3, 810–821 (2002).

    CAS  PubMed  Google Scholar 

  33. Rodriguez-Boulan, E. & Gonzalez, A. Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol. 9, 291–294 (1999).

    CAS  PubMed  Google Scholar 

  34. Lafont, F., Lecat, S., Verkade, P. & Simons, K. Annexin XIIIb associates with lipid microdomains to function in apical delivery. J. Cell Biol. 142, 1413–1427 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. De Marco, M.C. et al. MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J. Cell Biol. 159, 37–44 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Puertollano, R. et al. The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J. Cell Biol. 145, 141–151 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Apodaca, G. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic 2, 149–159 (2001).

    CAS  PubMed  Google Scholar 

  38. Kamal, A. & Goldstein, L.S. Connecting vesicle transport to the cytoskeleton. Curr. Opin. Cell Biol. 12, 503–508 (2000).

    CAS  PubMed  Google Scholar 

  39. Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol. 2, 125–127 (2000).

    CAS  PubMed  Google Scholar 

  40. Finger, F.P., Hughes, T.E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559–571 (1998).

    CAS  PubMed  Google Scholar 

  41. Novick, P. & Guo, W. Ras family therapy: Rab, Rho and Ral talk to the exocyst. Trends Cell Biol. 12, 247–249 (2002).

    CAS  PubMed  Google Scholar 

  42. Yeaman, C., Grindstaff, K.K., Wright, J.R. & Nelson, W.J. Sec6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells. J. Cell Biol. 155, 593–604 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Grindstaff, K.K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    CAS  PubMed  Google Scholar 

  44. Hsu, S.C., Hazuka, C.D., Foletti, D.L. & Scheller, R.H. Targeting vesicles to specific sites on the plasma membrane: the role of the sec6/8 complex. Trends Cell Biol. 9, 150–153 (1999).

    CAS  PubMed  Google Scholar 

  45. Murthy, M., Garza, D., Scheller, R.H. & Schwarz, T.L. Mutations in the exocyst component sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37, 433–447 (2003).

    CAS  PubMed  Google Scholar 

  46. Li, X., Low, S.H., Miura, M. & Weimbs, T. SNARE expression and localization in renal epithelial cells suggest mechanism for variability of trafficking phenotypes. Am. J. Physiol. Renal Physiol. 283, F1111–F1122 (2002).

    PubMed  Google Scholar 

  47. Low, S.-H. et al. Differential localization of syntaxin isoforms in polarized MDCK cells. Mol. Biol. Cell 7, 2007–2018 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lafont, F. et al. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc. Natl Acad. Sci. USA 96, 3734–3738 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Low, S.-H. et al. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J. Cell Biol. 141, 1503–1513 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Galli, T. et al. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol. Biol. Cell 9, 1437–1448 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Low, S.H. et al. Retinal pigment epithelial cells exhibit unique expression and localization of plasma membrane syntaxins which may contribute to their trafficking phenotype. J. Cell Sci. 115, 4545–4553 (2002).

    CAS  PubMed  Google Scholar 

  52. Truschel, S.T. et al. Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol. Biol. Cell 13, 830–846 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Giffroy, D. et al. In vivo stimulation of polymeric Ig receptor-transcytosis by circulating polymeric IgA in rat liver. Int. Immunol. 10, 347–354 (1998).

    CAS  PubMed  Google Scholar 

  54. Luton, F., Vergés, M., Vaerman, J.-P., Sudol, M. & Mostov, K.E. The src family protein tyrosine kinase p62yes controls polymeric IgA transcytosis in vivo. Mol. Cell 4, 627–632 (1999).

    CAS  PubMed  Google Scholar 

  55. van IJzendoorn, S.C.D., Tuvim, M.J., Weimbs, T., Dickey, B.F. & Mostov, K.E. Direct interaction between Rab3b and the polymeric immunoglobulin receptor controls ligand-stimulated transcytosis in epithelial cells. Dev. Cell 2, 219–228 (2002).

    CAS  PubMed  Google Scholar 

  56. Lecuit, T. & Pilot, F. Developmental control of cell morphogenesis: a focus on membrane growth. Nature Cell Biol. 5, 103–108 (2003).

    CAS  PubMed  Google Scholar 

  57. Yeaman, C., Grindstaff, K.K. & Nelson, W.J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79, 73–98 (1999).

    CAS  PubMed  Google Scholar 

  58. Takai, Y. & Nakanishi, N. Nectin and Afadin: novel organizers of intracellular junctions. J. Cell Sci. 116, 17–27 (2002).

    Google Scholar 

  59. Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol. 5, 53–58 (2003).

    CAS  PubMed  Google Scholar 

  60. Hurd, T.W., Gao, L., Roh, M.H., Macara, I.G. & Margolis, B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biol. 5, 137–142 (2003).

    CAS  PubMed  Google Scholar 

  61. Knust, E. & Bossinger, O. Composition and formation of intercellular junctions in epithelial cells. Science 298, 1955–1050 (2002).

    CAS  PubMed  Google Scholar 

  62. Itoh, M. et al. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J. Cell Biol. 154, 491–497 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Takekuni, K. et al. Direct binding of cell polarity protein PAR-3 to cell–cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J. Biol. Chem. 278, 5497–5500 (2003).

    CAS  PubMed  Google Scholar 

  64. Lehman, K., Rossi, G., Adamo, J.E. & Brennwald, P. Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J. Cell Biol. 146, 125–140 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Musch, A. et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol. Biol. Cell 13, 158–168 (2002).

    CAS  PubMed  Google Scholar 

  66. Myat, M.M. & Andrew, D.J. Epithelial tube morphology is determined by the polarized growth and delivery of apical membrane. Cell 111, 879–891 (2002).

    CAS  PubMed  Google Scholar 

  67. Medina, E. et al. Crumbs interacts with moesin and β (Heavy)-spectrin in the apical membrane skeleton of Drosophila. J. Cell Biol. 158, 941–951 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. O'Brien, L.E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nature Cell Biol. 3, 831–838 (2001).

    CAS  PubMed  Google Scholar 

  69. Zegers, M.M.P., O'Brien, L.E., Yu, W., Datta, A. & Mostov, K.E. Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol. (in the press).

  70. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–35 (2002).

    CAS  PubMed  Google Scholar 

  71. Hogan, B.L.M. & Kolodziej, P.A. Organogenesis: molecular mechanisms of tubulogenesis. Nature Rev. Genet. 3, 513–523 (2002).

    CAS  PubMed  Google Scholar 

  72. Lubarsky, B. & Krasnow, M.A. Tube morphogenesis. Making and shaping biological tubes. Cell 112, 19–28 (2003).

    CAS  PubMed  Google Scholar 

  73. Montesano, R., Matsumoto, K., Nakamura, T. & Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901–908 (1991).

    CAS  PubMed  Google Scholar 

  74. Pollack, A.L., Runyan, R.B. & Mostov, K.E. Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell–cell contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. Dev. Biol. 204, 64–79 (1998).

    CAS  PubMed  Google Scholar 

  75. Yu, W. et al. Hepatocyte growth factor switches orientatioin of polarity and mode of movement during morphogenesis of multicellular epithelial structures. Mol. Biol. Cell 14, 748–763 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Altschuler, Y. et al. ADP-ribosylation factor 6 and endocytosis at the apical surface of Madin-Darby canine kidney cells. J. Cell Biol. 147, 7–12 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Palacios, F., Price, L., Schweitzer, J., Collard, J.G. & D'Souza-Schorey, C. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J. 20, 4973–4986 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Brown, F.D., Rozelle, A.L., Yin, H.L., Balla, T. & Donaldson, J.G. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol. 154, 1007–1017 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Altschuler, Y. et al. Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms. J. Cell Biol. 143, 1871–1881 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Steegmaier, M., Lee, K.C., Prekeris, R. & Scheller, R.H. SNARE protein trafficking in polarized MDCK cells. Traffic 1, 553–560 (2000).

    CAS  PubMed  Google Scholar 

  81. Low, S.H. et al. Intracellular redirection of plasma membrane trafficking after loss of epithelial cell polarity. Mol. Biol. Cell 11, 3045–3060 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Slimane, T., Trugnan, G., van IJzendoorn, S. & Hoekstra, D. Raft mediated trafficking of apical resident proteins occurs in both direct and transcytotic pathways in polarized hepatic cells: role of distinct lipid microdomans. Mol. Biol. Cell (in the press).

  83. Tuma, P.L., Nyasae, L.K. & Hubbard, A.L. Nonpolarized cells selectively sort apical proteins from cell surface to a novel compartment, but lack apical retention mechanisms. Mol. Biol. Cell 13, 3400–3415 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Vega-Salas, D.E., Salas, P.J. & Rodriguez-Boulan, E. Exocytosis of vacuolar apical compartment (VAC): a cell–cell contact controlled mechanism for the establishment of the apical plasma membrane domain in epithelial cells. J. Cell Biol. 107, 1717–1728 (1988).

    CAS  PubMed  Google Scholar 

  85. Lecuit, T. & Wieschaus, E. Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J. Cell Biol. 150, 849–860 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zurzolo, C., Le Bivic, A., Quaroni, A., Nitsch, L. & Rodriguez-Boulan, E. Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line. EMBO J. 11, 2337–2344 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lipschutz, J.H. & Mostov, K.E. Exocytosis: The many masters of the exocyst. Curr. Biol. 12, R212–R214 (2002).

    CAS  PubMed  Google Scholar 

  89. Rogers, K.K., Jou, T.-S., Guo, W. & Lipschutz, J.H. The Rho family of small GTPases is involved in epithelial cystogenesis and tubulogenesis. Kidney Int. (in the press).

  90. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat. Cell Biol. 1, 8–13 (1999).

    CAS  PubMed  Google Scholar 

  91. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 20, 2171–2179 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Moskalenko, S. et al. The exocyst is a Ral effector complex. Nature Cell Biol. 4, 66–72 (2002).

    CAS  PubMed  Google Scholar 

  93. Vega, I.E. & Hsu, S.C. The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J. Neurosci. 21, 3839–3848 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lipschutz, J.H. et al. Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol. Biol. Cell 11, 4259–4275 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Toikkanen, J. et al. Yeast protein translocation complex: isolation of two genes SEB1 and SEB2 encoding proteins homologous to the Sec61 beta subunit. Yeast 12, 425–438 (1996).

    CAS  PubMed  Google Scholar 

  96. Kim, M. et al. Binding of the mammalian homolog of the Drosophila discs large tumor suppressor protein to the ribosome receptor. Biochem. Biophys. Res. Commun. 294, 1151–1154 (2002).

    CAS  PubMed  Google Scholar 

  97. Hirai, Y. et al. Epimorphin mediates mammary luminal morphogenesis through control of C/EBPbeta. J. Cell Biol. 153, 785–794 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lindstedt, R., Apodaca, G., Barondes, S.H., Mostov, K. & Leffler, H. Apical secretion of a cytosolic protein by MDCK cells: evidence for polarized release of an endogenous lectin by a non-classical secretory pathway. J. Biol. Chem. 268, 11750–11757 (1993).

    CAS  PubMed  Google Scholar 

  99. Bomsel, M. & Mostov, K. Role of heterotrimeric G proteins in membrane traffic. Mol. Biol. Cell 3, 1317–1328 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lecuit, T. & Wieschaus, E. Junctions as organizing centers in epithelial cells? A fly perspective. Traffic 3, 92–97 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our apologies to the many authors whose important work we could not cite, or were cited only indirectly through reviews, due to space limitations. We thank P. Brakeman for comments, members of our laboratory for discussions and J. Wong for assistance with manuscript preparation. K.M. is supported by grants from the National Institutes of Health. Correspondence should be addressed to K.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Mostov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mostov, K., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nat Cell Biol 5, 287–293 (2003). https://doi.org/10.1038/ncb0403-287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0403-287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing