Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spinal muscular atrophy disrupts the interaction of ZPR1 with the SMN protein

Abstract

The survival motor neurons (smn) gene in mice is essential for embryonic viability. In humans, mutation of the telomeric copy of the SMN1 gene causes spinal muscular atrophy, an autosomal recessive disease. Here we report that the SMN protein interacts with the zinc-finger protein ZPR1 and that these proteins colocalize in small subnuclear structures, including gems and Cajal bodies. SMN and ZPR1 redistribute from the cytoplasm to the nucleus in response to serum. This process is disrupted in cells from patients with Werdnig–Hoffman syndrome (spinal muscular atrophy type I) that have SMN1 mutations. Similarly, decreased ZPR1 expression prevents SMN localization to nuclear bodies. Our data show that ZPR1 is required for the localization of SMN in nuclear bodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of endogenous ZPR1 with SMN.
Figure 2: Interaction of ZPR1 and SMN requires the C-terminal region of both proteins.
Figure 3: Colocalization of nuclear ZPR1 with SMN.
Figure 4: Effect of ZPR1 on in vitro pre-mRNA splicing.
Figure 5: Interaction of ZPR1 with SMN is disrupted in cells derived from SMA patients.
Figure 6: ZPR1 and SMN are required for localization in nuclear gems.

Similar content being viewed by others

References

  1. Munsat, T. L. & Davies, K. E., eds International SMA consortium meeting, 26–28 June 1992, Bonn, Germany. Neuromuscul Disord. 2, 423–428 (1992).

    Article  CAS  Google Scholar 

  2. Wirth, B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum. Mutat. 15, 228–237 (2000).

    Article  CAS  Google Scholar 

  3. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy- determining gene. Cell 80, 155–165 (1995).

    Article  CAS  Google Scholar 

  4. Schrank, B. et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc. Natl Acad. Sci. USA 94, 9920–9925 (1997).

    Article  CAS  Google Scholar 

  5. Miguel-Aliaga, I. et al. The Caenorhabditis elegans orthologue of the human gene responsible for spinal muscular atrophy is a maternal product critical for germline maturation and embryonic viability. Hum. Mol. Genet. 8, 2133–2143 (1999).

    Article  CAS  Google Scholar 

  6. Monani, U. R. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8, 1177–1183 (1999).

    Article  CAS  Google Scholar 

  7. Lorson, C. L., Hahnen, E., Androphy, E. J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl Acad. Sci. USA 96, 6307–6311 (1999).

    Article  CAS  Google Scholar 

  8. Frugier, T. et al. Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy. Hum. Mol. Genet. 9, 849–858 (2000).

    Article  CAS  Google Scholar 

  9. Hsieh-Li, H. M. et al. A mouse model for spinal muscular atrophy. Nature Genet. 24, 66–70 (2000).

    Article  CAS  Google Scholar 

  10. Monani, U. R. et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn−/− mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet. 9, 333–339 (2000).

    Article  CAS  Google Scholar 

  11. Liu, Q. & Dreyfuss, G. A novel nuclear structure containing the survival of motor neurons protein. EMBO J. 15, 3555–3565 (1996).

    Article  CAS  Google Scholar 

  12. Matera, A. G. & Frey, M. R. Coiled bodies and gems: Janus or gemini? Am. J. Hum. Genet. 63, 317–321 (1998).

    Article  CAS  Google Scholar 

  13. Carvalho, T. et al. The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body. J. Cell Biol. 147, 715–728 (1999).

    Article  CAS  Google Scholar 

  14. Young, P. J., Le, T. T., thi Man, N., Burghes, A. H. & Morris, G. E. The relationship between SMN, the spinal muscular atrophy protein, and nuclear coiled bodies in differentiated tissues and cultured cells. Exp. Cell Res. 256, 365–374 (2000).

    Article  CAS  Google Scholar 

  15. Liu, Q., Fischer, U., Wang, F. & Dreyfuss, G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1, are in a complex with spliceosomal snRNP proteins. Cell 90, 1013–1021 (1997).

    Article  CAS  Google Scholar 

  16. Fischer, U., Liu, Q. & Dreyfuss, G. The SMN–SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90, 1023–1029 (1997).

    Article  CAS  Google Scholar 

  17. Pellizzoni, L., Kataoka, N., Charroux, B. & Dreyfuss, G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95, 615–624 (1998).

    Article  CAS  Google Scholar 

  18. Pagliardini, S. et al. Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. Hum. Mol. Genet. 9, 47–56 (2000).

    Article  CAS  Google Scholar 

  19. Coovert, D. D. et al. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 6, 1205–1214 (1997).

    Article  CAS  Google Scholar 

  20. Lefebvre, S. et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nature Genet. 16, 265–269 (1997).

    Article  CAS  Google Scholar 

  21. Galcheva-Gargova, Z. et al. Binding of zinc-finger protein ZPR1 to the epidermal growth factor receptor. Science 272, 1797–1802 (1996).

    Article  CAS  Google Scholar 

  22. Galcheva-Gargova, Z. et al. The cytoplasmic zinc-finger protein ZPR1 accumulates in the nucleolus of proliferating cells. Mol. Biol. Cell 9, 2963–2971 (1998).

    Article  CAS  Google Scholar 

  23. Gangwani, L., Mikrut, M., Galcheva-Gargova, Z. & Davis, R. J. Interaction of ZPR1 with translation elongation factor-1α in proliferating cells. J. Cell Biol. 143, 1471–1484 (1998).

    Article  CAS  Google Scholar 

  24. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  Google Scholar 

  25. The C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  26. Bertrandy, S. et al. The RNA-binding properties of SMN: deletion analysis of the zebrafish orthologue defines domains conserved in evolution. Hum. Mol. Genet. 8, 775–782 (1999).

    Article  CAS  Google Scholar 

  27. Owen, N., Doe, C. L., Mellor, J. & Davies, K. E. Characterization of the Schizosaccharomyces pombe orthologue of the human survival motor neuron (SMN) protein. Hum. Mol. Genet. 9, 675–684 (2000).

    Article  CAS  Google Scholar 

  28. Charroux, B. et al. Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J. Cell Biol. 147, 1181–1194 (1999).

    Article  CAS  Google Scholar 

  29. Lorson, C. L. et al. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nature Genet. 19, 63–66 (1998).

    Article  CAS  Google Scholar 

  30. Charroux, B. et al. Gemin4. A novel component of the smn complex that is found in both gems and nucleoli. J. Cell Biol. 148, 1177–1186 (2000).

    Article  CAS  Google Scholar 

  31. Iwahashi, H. et al. Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy. Nature 390, 413–417 (1997).

    Article  CAS  Google Scholar 

  32. Strasswimmer, J. et al. Identification of survival motor neuron as a transcriptional activator- binding protein. Hum. Mol. Genet. 8, 1219–1226 (1999).

    Article  CAS  Google Scholar 

  33. Williams, B. Y., Hamilton, S. L. & Sarkar, H. K. The survival motor neuron protein interacts with the transactivator FUSE binding protein from human fetal brain. FEBS Lett. 470, 207–210 (2000).

    Article  CAS  Google Scholar 

  34. Giesemann, T. et al. A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocalize with smn in nuclear gems. J. Biol. Chem. 274, 37908–37914 (1999).

    Article  CAS  Google Scholar 

  35. Coovert, D. D. et al. Does the survival motor neuron protein (SMN) interact with Bcl-2? J. Med. Genet. 37, 536–539 (2000).

    Article  CAS  Google Scholar 

  36. Meister, G. et al. Characterization of a nuclear 20S complex containing the survival of motor neurons (SMN) protein and a specific subset of spliceosomal Sm proteins. Hum. Mol. Genet. 9, 1977–1986 (2000).

    Article  CAS  Google Scholar 

  37. Pellizzoni, L., Charroux, B. & Dreyfuss, G. SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc. Natl Acad. Sci. USA 96, 11167–11172 (1999).

    Article  CAS  Google Scholar 

  38. Gall, J. G., Bellini, M., Wu, Z. & Murphy, C. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol. Biol. Cell 10, 4385–4402 (1999).

    Article  CAS  Google Scholar 

  39. Lewis, J. D. & Tollervey, D. Like attracts like: getting RNA processing together in the nucleus. Science 288, 1385–1389 (2000).

    Article  CAS  Google Scholar 

  40. Sleeman, J. E. & Lamond, A. I. Nuclear organization of pre-mRNA splicing factors. Curr. Opin. Cell Biol. 11, 372–377 (1999).

    Article  CAS  Google Scholar 

  41. Francis, J. W., Sandrock, A. W., Bhide, P. G., Vonsattel, J. P. & Brown, R. H. Jr Heterogeneity of subcellular localization and electrophoretic mobility of survival motor neuron (SMN) protein in mammalian neural cells and tissues. Proc. Natl Acad. Sci. USA 95, 6492–6497 (1998).

    Article  CAS  Google Scholar 

  42. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual, (Cold Spring Harbor Press, Cold Spring Harbor, 1988).

    Google Scholar 

  43. Andrade, L. E., Tan, E. M. & Chan, E. K. Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc. Natl Acad. Sci. USA 90, 1947–1951 (1993).

    Article  CAS  Google Scholar 

  44. Zillmann, M., Zapp, M. L. & Berget, S. M. Gel electrophoretic isolation of splicing complexes containing U1 small nuclear ribonucleoprotein particles. Mol. Cell. Biol. 8, 814–821 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. K. L. Chan and G. Dreyfuss for providing reagents, and K. Gemme for administrative assistance. This study was supported by a grant from the National Cancer Institute. R.J.D. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangwani, L., Mikrut, M., Theroux, S. et al. Spinal muscular atrophy disrupts the interaction of ZPR1 with the SMN protein. Nat Cell Biol 3, 376–383 (2001). https://doi.org/10.1038/35070059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070059

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing