Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cell biology of neuronal navigation

Abstract

Morphogenesis of the nervous system requires the directed migration of postmitotic neurons to designated locations in the nervous system and the guidance of axon growth cones to their synaptic targets. Evidence suggests that both forms of navigation depend on common guidance molecules, surface receptors and signal transduction pathways that link receptor activation to cytoskeletal reorganization. Future challenges remain not only in identifying all the components of the signalling pathways, but also in understanding how these pathways achieve signal amplification and adaptation—two essential cellular processes for neuronal navigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amplification and adaptation during growth cone navigation in a gradient of guidance signals.
Figure 2: The interwoven network of signalling molecules that link guidance receptors with the cytoskeletal rearrangement underlying directed neuronal motility.

Similar content being viewed by others

References

  1. Kandel, E., Schwartz, J. & Jessel, T. M. Principles of Neural Sciences 4th edn (McGraw-Hill, New York, 2000).

    Google Scholar 

  2. Sane, D. H., Reh, T. A. & Harris, W. A. Development of the Nervous System (Academic, San Diego, 2000).

    Google Scholar 

  3. Rakic, P. & Lombroso, P. J. Development of the cerebral cortex: I. Forming the cortical structure. J. Am. Acad. Child Adolesc. Psychiat. 37, 116–117 ( 1998).

    Article  CAS  Google Scholar 

  4. Hatten, M. E. Central nervous system neuronal migration. Annu. Rev. Neurosci. 22, 511–539 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  5. Le Douarin, N. M., Hallonet, M. E. & Pourquie, O. Cell migrations and establishment of neuronal connections in the developing brain: a study using the quail-chick chimera system. Prog. Brain Res. 100, 3–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Goodman, C. S. & Tessier-Lavigne, M. in Molecular and Cellular Approaches to Neural Development (eds Cowan, W. M., Jessell, T. M. & Zipursky, S. L.) 108–178 (Oxford Univ. Press, 1997).

    Google Scholar 

  7. Devreotes, P. N. & Zigmond, S. H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 4, 649–686 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Mueller, B. K. Growth cone guidance: first steps towards a deeper understanding. Annu. Rev. Neurosci. 22, 351–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123 –1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Harrison, R. G. The reaction of embryonic cells to solid structures. J. Exp. Zool. 17, 521–544 ( 1914).

    Article  Google Scholar 

  11. Weiss, P. A. In vitro experiments on the factors determining the course of the outgrowing nerve fiber. J. Exp. Zool. 68, 393– 448 (1934).

    Article  Google Scholar 

  12. Holtfreter, J. Neural differentiation of ectoderm through exposure to saline solution. J. Exp. Zool. 95, 307–343 (1944).

    Article  Google Scholar 

  13. Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections . Proc. Natl. Acad. Sci. USA 50, 703– 710 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walsh, F. S. & Doherty, P. Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu. Rev. Cell Dev. Biol. 13, 425– 456 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Bentley, D. & Caudy, M. Pioneer axons lose directed growth after selective killing of guidepost cells. Nature 304, 62–65 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Bastiani, M. J., Harrelson, A. L., Snow, P. M. & Goodman, C. S. Expression of fasciclin I and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper. Cell 48, 745–755 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, C., Heintz, N. & Hatten, M. E. CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272, 417–419 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Anton, E. S., Kreidberg, J. A. & Rakic, P. Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 22, 277–289 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  19. Dulabon, L. et al. Reelin binds α3β1 integrin and inhibits neuronal migration. Neuron 27, 33– 44 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain . J. Neurosci. 17, 5046– 5061 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lallier, T., Deutzmann, R., Perris, R. & Bronner-Fraser, M. Neural crest cell interactions with laminin: structural requirements and localization of the binding site for α1β1 integrin. Dev. Biol. 162, 451–464 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. McKenna, M. P. & Raper, J. A. Growth cone behavior on gradients of substratum bound laminin. Dev. Biol. 130, 232–236 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Hopker, V. H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Krull, C. E. et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr. Biol. 7, 571–580 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Hattori, M., Osterfield, M. & Flanagan, J. G. Regulated cleavage of a contact-mediated axon repellent . Science 289, 1360–1365 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Cajal, S. R. in Histology of the Nervous System Vol. 1 (Transl. Swanson, N. & Swanson, L. W.) 532–537 (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  27. Ebendal, T. & Jacobson, C. O. Tissue explants affecting extension and orientation of axons in cultured chick embryo ganglia. Exp. Cell Res. 105, 379–387 ( 1977).

    Article  CAS  PubMed  Google Scholar 

  28. Tessier-Lavigne, M., Placzek, M., Lumsden, A. G., Dodd, J. & Jessell, T. M. Chemotropic guidance of developing axons in the mammalian central nervous system. Nature 336, 775–778 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Pini, A. Chemorepulsion of axons in the developing mammalian central nervous system . Science 261, 95–98 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Keynes, R. et al. Surround repulsion of spinal sensory axons in higher vertebrate embryos. Neuron 18, 889– 897 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Lumsden, A. G. & Davies, A. M. Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor. Nature 306, 786– 788 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Harris, W. A. Homing behaviour of axons in the embryonic vertebrate brain. Nature 320, 266–269 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  33. Brose, K. & Tessier-Lavigne, M. Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr. Opin. Neurobiol. 10, 95–102 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  34. Harris, W. A. Local positional cues in the neuroepithelium guide retinal axons in embryonic Xenopus brain. Nature 339, 218– 221 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Nakamura, H. & O'Leary, D. D. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. J. Neurosci. 9, 3776–3795 ( 1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trowe, T. et al. Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 123, 439–450 (1996).

    CAS  PubMed  Google Scholar 

  37. Gierer, A. Model for the retino-tectal projection. Proc. R. Soc. Lond. B 218, 77–93 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. Loschinger, J., Weth, F. & Bonhoeffer, F. Reading of concentration gradients by axonal growth cones. Phil. Trans. R. Soc. Lond. B 355, 1–12 (2000).

    Google Scholar 

  39. Walsh, C. A. & Goffinet, A. M. Potential mechanisms of mutations that affect neuronal migration in man and mouse. Curr. Opin. Genet. Dev. 10, 270–274 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  40. Tang, J., Rutishauser, U. & Landmesser, L. Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13, 405–414 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Stoeckli, E. T., Sonderegger, P., Pollerberg, G. E. & Landmesser, L. T. Interference with axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons. Neuron 18, 209–221 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Jurata, L. W., Thomas, J. B. & Pfaff, S. L. Transcriptional mechanisms in the development of motor control. Curr. Opin. Neurobiol. 10, 72–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Song, H. J. & Poo, M. M. Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opin. Neurobiol. 9, 355–363 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927– 941 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Polleux, F., Morrow, T. & Ghosh, A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567– 573 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Blochl, A. & Thoenen, H. Characterization of nerve growth factor (NGF) release from hippocampal neurons: evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur. J. Neurosci. 7, 1220–1228 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, X., Berninger, B. & Poo, M. Localized synaptic actions of neurotrophin-4. J. Neurosci. 18, 4985–4992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Halloran, M. C. et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127, 1953– 1960 (2000).

    CAS  PubMed  Google Scholar 

  49. Yee, K. T., Simon, H. H., Tessier-Lavigne, M. & O'Leary, D. M. Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24, 607–622 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Hu, H. Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 23, 703–711 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, W. et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400, 331– 336 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu, Y., Li, H., Zhou, L., Wu, J. Y. & Rao, Y. Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 23, 473– 485 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Rosentreter, S. M. et al. Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules. J. Neurobiol. 37, 541–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Ming, G. et al. Phospholipase C-γ and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron 23, 139–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Goodhill, G. J. & Urbach, J. S. Theoretical analysis of gradient detection by growth cones. J. Neurobiol. 41, 230–241 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Zigmond, S. H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75, 606– 616 (1977).

    Article  CAS  PubMed  Google Scholar 

  57. Lohof, A. M., Quillan, M., Dan, Y. & Poo, M. M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J. Neurosci. 12, 1253–1261 ( 1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zheng, J. Q., Felder, M., Connor, J. A. & Poo, M. M. Turning of nerve growth cones induced by neurotransmitters. Nature 368, 140–144 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  59. Song, H. J., Ming, G. L. & Poo, M. M. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275– 279 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Song, H. J. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Baier, H. & Bonhoeffer, F. Axon guidance by gradients of a target-derived component. Science 255, 472–475 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Meinhardt, H. Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112, 2867–2874 (1999).

    CAS  PubMed  Google Scholar 

  63. Nieto, M. et al. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J. Exp. Med. 186, 153–158 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B. & Devreotes, P. N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95, 81–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037 –1040 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Firtel, R. A. & Chung, C. Y. The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. BioEssays 22, 603–615 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  67. Goldberg, D. J. & Wu, D. Y. Tyrosine phosphorylation and protrusive structures of the growth cone. Perspect. Dev. Neurobiol. 4, 183–192 ( 1996).

    CAS  PubMed  Google Scholar 

  68. Nakamura, F., Kalb, R. G. & Strittmatter, S. M. Molecular basis of semaphorin-mediated axon guidance . J. Neurobiol. 44, 219– 229 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Castellani, V., Chedotal, A., Schachner, M., Faivre-Sarrailh, C. & Rougon, G. Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 27, 237–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Gilmore, E. C. & Herrup, K. Cortical development: receiving reelin. Curr. Biol. 10, R162– R166 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Ming, G. L. et al. cAMP-dependent growth cone guidance by netrin-1. Neuron 19, 1225–1235 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  72. Hong, K., Nishiyama, M., Henley, J., Tessier-Lavigne, M. & Poo, M. Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403, 93 –98 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Zheng, J. Q. Turning of nerve growth cones induced by localized increases in intracellular calcium ions. Nature 403, 89– 93 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Rakic, P. & Komuro, H. The role of receptor/channel activity in neuronal cell migration. J. Neurobiol. 26, 299–315 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Wymann, M. P., Sozzani, S., Altruda, F., Mantovani, A. & Hirsch, E. Lipids on the move: phosphoinositide 3-kinases in leukocyte function. Immunol. Today 21, 260– 264 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Bar-Sagi, D. & Hall, A. Ras and Rho GTPases: A familiy reunion . Cell 103, 227–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173–180 (2000).

    Article  CAS  Google Scholar 

  78. Newsome, T. P. et al. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 101, 283–294 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Allen, W. E., Zicha, D., Ridley, A. J. & Jones, G. E. A role for Cdc42 in macrophage chemotaxis. J. Cell Biol. 141, 1147–1157 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Suter, D. M. & Forscher, P. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J. Neurobiol. 44, 97–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Weiner, O. D. et al. Spatial control of actin polymerization during neutrophil chemotaxis. Nature Cell Biol. 1, 75– 81 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Lanier, L. M. & Gertler, F. B. From Abl to actin: Abl tyrosine kinase and associated proteins in growth cone motility. Curr. Opin. Neurobiol. 10, 80–87 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  86. Laurent, V. et al. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol. 144, 1245–1258 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ali, H., Richardson, R. M., Haribabu, B. & Snyderman, R. Chemoattractant receptor cross-desensitization. J. Biol. Chem. 274, 6027–6030 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  88. Kidd, T., Russell, C., Goodman, C. S. & Tear, G. Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 20, 25–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Galko, M. J. & Tessier-Lavigne, M. Function of an axonal chemoattractant modulated by metalloprotease activity. Science 289, 1365–1367 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Bashaw, G. J., Kidd, T., Murray, D., Pawson, T. & Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 101, 703–715 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Sym, M., Robinson, N. & Kenyon, C. MIG-13 positions migrating cells along the anteroposterior body axis of C. elegans. Cell 98, 25–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Condic, M. L. & Letourneau, P. C. Ligand-induced changes in integrin expression regulate neuronal adhesion and neurite outgrowth. Nature 389, 852–856 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  93. Falke, J. J., Bass, R. B., Butler, S. L., Chervitz, S. A. & Danielson, M. A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13, 457–512 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hamelin, M., Zhou, Y., Su, M. W., Scott, I. M. & Culotti, J. G. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327–330 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  95. Bashaw, G. J. & Goodman, C. S. Chimeric axon guidance receptors: the cytoplasmic domains of slit and netrin receptors specify attraction versus repulsion. Cell 97, 917– 926 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Branda, C. S. & Stern, M. J. Cell migration and axon growth cone guidance in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 9, 479–484 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  97. Bray, D. Protein molecules as computational elements in living cells. Nature 376, 307–312 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  98. Jodan, J. D., Landau, E. M. & Iyengar, R. Signaling networks: the origins of cellular multitasking . Cell 103, 193–200 (2000).

    Article  Google Scholar 

  99. Anand-Apte, B. & Zetter, B. Signaling mechanisms in growth factor-stimulated cell motility. Stem Cells 15, 259–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Sanchez-Madrid, F. & del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Ming for help with the manuscript. H-j.S. is supported by a fellowship from the Howard Hughes Medical Institute. The work on growth-cone guidance in the authors' laboratory was supported by a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-jun Song or Mu-ming Poo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Hj., Poo, Mm. The cell biology of neuronal navigation. Nat Cell Biol 3, E81–E88 (2001). https://doi.org/10.1038/35060164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35060164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing