Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule imaging of EGFR signalling on the surface of living cells

Abstract

The early events in signal transduction from the epidermal growth factor (EGF) receptor (EGFR) are dimerization and autophosphorylation of the receptor, induced by binding of EGF. Here we observe these events in living cells by visualizing single molecules of fluorescent-dye-labelled EGF in the plasma membrane of A431 carcinoma cells. Single-molecule tracking reveals that the predominant mechanism of dimerization involves the formation of a cell-surface complex of one EGF molecule and an EGFR dimer, followed by the direct arrest of a second EGF molecule, indicating that the EGFR dimers were probably preformed before the binding of the second EGF molecule. Single-molecule fluorescence-resonance energy transfer shows that EGF–EGFR complexes indeed form dimers at the molecular level. Use of a monoclonal antibody specific to the phosphorylated (activated) EGFR reveals that the EGFR becomes phosphorylated after dimerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TIR microscopy for visualization of single molecules on the cell surface.
Figure 2: Visualization of Cy3–EGF on the plasma membrane of living A431 cells.
Figure 3: Distribution of the fluorescence intensity of Cy3–EGF and Cy3–EGFR1 1 on the surface of living cells.
Figure 4: Intracellular Ca2+ response induced by Cy3–EGF and the change in intensity distribution of Cy3–EGF spots.
Figure 5: Dimerization of EGF–EGFR complexes.
Figure 6: Single-molecule FRET between Cy3–EGF and Cy5–EGF.
Figure 7: Phosphorylation of EGF–EGFR complexes.

Similar content being viewed by others

References

  1. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  CAS  Google Scholar 

  2. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).

    Article  CAS  Google Scholar 

  3. Tokunaga, M., Kitamura, K., Saito, K., Hikikoshi-Iwane, A. & Yanagida, T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235, 47–53 (1997).

    Article  CAS  Google Scholar 

  4. Yarden, Y. & Schlessinger, J. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 26, 1443–1451 (1987).

    Article  CAS  Google Scholar 

  5. Yarden, Y. & Schlessinger, J. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry 26, 1434–1442 (1987).

    Article  CAS  Google Scholar 

  6. Chung, C., Sciaky, N. & Gross, D. J. Heterogeneity of epidermal growth factor binding kinetics on individual cells. Biophys. J. 73, 1089–1102 (1997).

    Article  CAS  Google Scholar 

  7. Carraway, K. L. III & Cerione, R. A. Comparison of epidermal growth factor (EGF) receptor-receptor interactions in intact A431 cells and isolated plasma membrane. J. Biol. Chem. 266, 8899–8906 (1991).

    CAS  PubMed  Google Scholar 

  8. Schütz, G. J., Schindler, H. & Schmidt, T. H. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73, 1073–1080 (1997).

    Article  Google Scholar 

  9. Ide, T. & Yanagida, T. An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion-channels. Biochem. Biophys. Res. Commun. 265, 595–599 (1999).

    Article  CAS  Google Scholar 

  10. Azevedo, J. R. & Johnson, D. A. Temperature-dependent lateral and transverse distribution of the epidermal growth factor receptor in A431 plasma membranes. J. Memb. Biol. 118, 215–224 (1990).

    Article  CAS  Google Scholar 

  11. Zidovetzki, R., Yarden, Y., Schlessinger, J. & Jovin, T. M. Microaggregation of hormone-occupied epidermal growth factor receptors on plasma membrane preparations. EMBO J. 5, 247–250 (1986).

    Article  CAS  Google Scholar 

  12. Gadella, T. W. J. Jr & Jovin, T. M. Oligomerization of epidermal growth factor receptors on A 431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J. Cell Biol. 129, 1543–1558 (1995).

    Article  CAS  Google Scholar 

  13. den Hartigh, J. C., van Bergen en Henegouwen, P. M., Verkleij, A. J. & Boonstra, J. The EGF receptor is an actin-binding protein. J. Cell Biol. 119, 349–355 (1992).

    Article  CAS  Google Scholar 

  14. Wiegant, F. A. C. et al. Epidermal growth factor receptors associated to cytoskeletal elements of epidermoid carcinoma (A431) cells. J. Cell Biol. 103, 87–94 (1986).

    Article  CAS  Google Scholar 

  15. Ishii, Y., Yoshida, T., Funatsu, T., Wazawa, T. & Yanagida, T. Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution. Chem. Phys. 247, 163–173 (1999).

    Article  CAS  Google Scholar 

  16. Kinoshita, K., Itoh, H., Ishiwata, S., Nishizaka, T. & Hayakawa, T. Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium. J. Cell Biol. 115,67–73 (1991).

  17. Campos-González, R. & Glenney, J. R. Jr Immunodetection of the ligand-activated receptor for epidermal growth factor. Growth Factors 4, 305–316 (1991).

    Article  Google Scholar 

  18. Pimplikar, S. W., Ikonen, E. & Simons, K. Basolateral protein transport in streptolysin O-permeabilized MDCK cells. J. Cell Biol. 125, 1025–1035 (1994).

    Article  CAS  Google Scholar 

  19. Lemmon, M. A. et al. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J. 16, 281–294 (1997).

    Article  CAS  Google Scholar 

  20. Hurwitz, D. R. et al. EGF induces increased ligand binding affinity and dimerization of soluble epidermal growth factor (EGF) receptor extracellular domain. J. Biol. Chem. 266, 22035–22043 (1991).

    CAS  PubMed  Google Scholar 

  21. Sorokin, A., Lemmon, A., Ullrich, A. & Schlessinger, J. Stabilization of an active dimeric form of the epidermal growth factor receptor by introduction of an inter-receptor disulfide bond. J. Biol. Chem. 269, 9752–9759 (1994).

    CAS  PubMed  Google Scholar 

  22. Tzahar, E. et al. Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO J. 16, 4938–4950 (1997).

    Article  CAS  Google Scholar 

  23. Sako, Y. & Kusumi, A. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J. Cell Biol. 129, 1559–1574 (1995).

    Article  CAS  Google Scholar 

  24. Kusumi, A. & Sako, Y. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 8, 566–574 (1996).

    Article  CAS  Google Scholar 

  25. Sako, Y., Nagafuchi, A., Tsukita, S., Takeichi, M. & Kusumi, A. Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J. Cell Biol. 140, 1227–1240 (1998).

    Article  CAS  Google Scholar 

  26. Carraway, K. L. III, Koland, J. G. & Cerione, R. A. Visualization of epidermal growth factor (EGF) receptor aggregation in plasma membranes by fluorescence resonance energy transfer. Correlation of receptor activation with aggregation. J. Biol. Chem. 264, 8699–8707 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Wazawa at the Single-Molecular Processes Project for the computer program with which to measure fluorescence intensity; M. Murata for streptolysin O; and P. Conibear and F. Brozovich for critical reading of the manuscript.

Correspondence and requests for materials should be addressed to T.Y.

Supplementary information is available on Nature Cell Biology’s World-Wide Web site (http://cellbio.nature.com) or as paper copy from the London editorial office of Nature Cell Biology.

Author information

Authors and Affiliations

Authors

Supplementary information

Figure 1

Effects of illumination mode on single-molecule imaging. (PDF 100 kb)

Figure 2 Single-molecule FRET from Cy3–EGF to Cy5–EGF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2, 168–172 (2000). https://doi.org/10.1038/35004044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35004044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing