Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ras is involved in nerve-activity-dependent regulation of muscle genes

Abstract

Gene expression in skeletal muscle is regulated by the firing pattern of motor neurons, but the signalling systems involved in excitation–transcription coupling are unknown. Here, using in vivo transfection in regenerating muscle, we show that constitutively active Ras and a Ras mutant that selectively activates the MAPK(ERK) pathway are able to mimic the effects of slow motor neurons on expression of myosin genes. Conversely, the effect of slow motor neurons is inhibited by a dominant-negative Ras mutant. MAPK(ERK) activity is increased by innervation and by low-frequency electrical stimulation. These results indicate that Ras–MAPK signalling is involved in promoting nerve-activity-dependent differentiation of slow muscle fibres in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MyHC-slow expression is induced by constitutively active RasV12 in denervated regenerating soleus muscle.
Figure 2: The fast-to-slow myosin switching induced by slow motor neurons is inhibited by dominant-negative RasN17.
Figure 3: Myosin switching is induced by RasS35 but not by RasG37 or RasC40.
Figure 4: MyHC-slow expression is induced by constitutively active MAPKK in denervated regenerating muscle.
Figure 5: Effect of Ras double mutants on muscle-fibre growth in regenerating muscles.
Figure 6: ERK activity is induced by nerve activity in regenerating soleus muscle and by electrostimulation in adult soleus muscle.

Similar content being viewed by others

References

  1. Duclert, A. & Changeux, J. P. Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol. Rev. 75, 339–368 (1995).

    Article  CAS  Google Scholar 

  2. Eftimie, R., Brenner, H. R. & Buonanno, A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc. Natl Acad. Sci. USA 88, 1349–1353 (1991).

    Article  CAS  Google Scholar 

  3. Klarsfeld, A. et al. Regulation of muscle AChR α subunit gene expression by electrical activity: involvement of protein kinase C and Ca2+. Neuron 2, 1229–1236 (1989).

    Article  CAS  Google Scholar 

  4. Huang, C. F., Tong, J. & Schmidt, J. Protein kinase C couples membrane excitation to acetylcholine receptor gene inactivation in chick skeletal muscle. Neuron 9, 671–678 (1992).

    Article  CAS  Google Scholar 

  5. Chahine, K. G., Baracchini, E. & Goldman, D. Coupling muscle electrical activity to gene expression via a cAMP-dependent second messenger system. J. Biol. Chem. 268, 2893–2898 (1993).

    CAS  PubMed  Google Scholar 

  6. Hughes, S. M. et al. Selective accumulation of MyoD and myogenin in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118, 1137–1147 (1993).

    CAS  PubMed  Google Scholar 

  7. Voytik, S. L., Przyborski, M., Badylak, S. F. & Konieczny, S. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev. Dyn. 98, 214–224 (1993).

    Article  Google Scholar 

  8. Hughes, S., Chi, M., Lowry, O. & Gundersen, K. Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice. J. Cell Biol. 145, 633–642 (1999).

    Article  CAS  Google Scholar 

  9. Chin, E. et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fibre type. Genes Dev. 12, 2499–2509 (1998).

    Article  CAS  Google Scholar 

  10. Naya, R. J. et al. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J. Biol. Chem. 275, 4545–4548 (2000).

    Article  CAS  Google Scholar 

  11. Calvo, S., Venepally, P., Cheng, J. & Buonanno, A. Fibre-type-specific transcription of the troponin I slow gene is regulated by multiple elements. Mol. Cell. Biol. 19, 515–525 (1999).

    Article  CAS  Google Scholar 

  12. Semsarian, C. et al. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400, 576–581 (1999).

    Article  CAS  Google Scholar 

  13. Goodyear, L. J., Chung, P.-Y., Sherwood, D., Dufresne, S. D. & Moller, D. E. Effects of exercise and insulin on mitogen-activated protein kinase signalling pathways in rat skeletal muscle. Am. J. Physiol. 271, E403–E408 (1996).

    CAS  PubMed  Google Scholar 

  14. Aronson, D. et al. Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle. J. Clin. Invest. 99, 1251–1257 (1997).

    Article  CAS  Google Scholar 

  15. Widegren, U. et al. Divergent effects of exercise on metabolic and mitogenic signalling pathways in human skeletal muscle. FASEB J. 12, 1379–1389 (1998).

    Article  CAS  Google Scholar 

  16. Aronson, D., Dufresne, S. D. & Goodyear, L. J. Contractile activity stimulates the c-Jun NH2-terminal kinase pathway in rat skeletal muscle. J. Biol. Chem. 272, 25636–25640 (1997).

    Article  CAS  Google Scholar 

  17. Sherwood, D. et al. Differential regulation of MAP kinase, p70(S6K), and Akt by contraction and insulin in rat skeletal muscle. Am. J. Physiol. 276, E870–E878 (1999).

    CAS  PubMed  Google Scholar 

  18. Esser, K., Gunning, P. & Hardeman, E. Nerve-dependent and -independent patterns of mRNA expression in regenerating skeletal muscle. Dev. Biol. 159, 173–183 (1993).

    Article  Google Scholar 

  19. Vitadello, M., Schiaffino, M. V., Picard, A., Scarpa, M. & Schiaffino, S. Gene transfer in regenerating muscle. Hum. Gene Ther. 5, 11–18 (1994).

    Article  CAS  Google Scholar 

  20. Schiaffino, S. & Reggiani, C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev. 76, 371–423 (1996).

    Article  CAS  Google Scholar 

  21. Jerkovic, R., Argentini, C., Serrano-Sanchez, A., Cordonnier, C. & Schiaffino, S. Early myosin switching induced by nerve activity in regenerating slow skeletal muscle. Cell Struct. Funct. 22, 147–153 (1997).

    Article  CAS  Google Scholar 

  22. White, M. et al. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80, 533–541 (1995).

    Article  CAS  Google Scholar 

  23. Joneson, T., White, M., Wigler, M. & Bar-Sagi, D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271, 810–812 (1996).

    Article  CAS  Google Scholar 

  24. Rodriguez-Viciana, P. et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89, 457–467 (1997).

    Article  CAS  Google Scholar 

  25. Jerkovic, R., Vitadello, M., Kelly, R., Buckingham, M. & Schiaffino, S. Fibre type-specific and nerve-dependent regulation of myosin light chain 1 slow promoter in regenerating muscle. J. Muscle Res. Cell Motil. 18, 369–373 (1997).

    Article  CAS  Google Scholar 

  26. Wolff, J. A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990).

    Article  CAS  Google Scholar 

  27. Devlin, B. H., Wefald, F. C., Kraus, W. E., Bernard, T. S. & Williams, R. S. Identification of a muscle-specific enhancer within the 5"-flanking region of the human myoglobin gene. J. Biol. Chem. 264, 13896–13901 (1989).

    CAS  PubMed  Google Scholar 

  28. Hennig, R. & Lømo, T. Firing patterns of motor units in normal rats. Nature 314, 164–166 (1985).

    Article  CAS  Google Scholar 

  29. Ausoni, S., Gorza, L., Schiaffino, S., Gundersen, K. & Lømo, T. Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J. Neurosci. 10, 153–160 (1990).

    Article  CAS  Google Scholar 

  30. Olson, E. N., Spizz, G. & Tainski, M. A. The oncogenic forms of N-ras and H-ras prevent skeletal myoblast differentiation. Mol. Cell. Biol. 7, 2104–2111 (1987).

    Article  CAS  Google Scholar 

  31. Bennet, A. M. & Tonks, N. K. Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278, 1288–1291 (1997).

    Article  Google Scholar 

  32. Gredinger, E., Gerber, A. N., Tamir, Y., Tapscott, S. J. & Bengal, E. Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. J. Biol. Chem. 273, 10436–10444 (1998).

    Article  CAS  Google Scholar 

  33. Feldman, J. L. & Stockdale, F. E. Skeletal muscle satellite cell diversity: satellite cells form fibres of different types in cell culture. Dev. Biol. 143, 320–334 (1991).

    Article  CAS  Google Scholar 

  34. Dusterhoft, S. & Pette, D. Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation 53, 25–33 (1993).

    Article  CAS  Google Scholar 

  35. Barjot, C., Cotten, M.-L., Goblet, C., Whalen, R. G. & Bacou, F. Expression of myosin heavy chain and of myogenic regulatory factor genes in fast or slow rabbit muscle satellite cell cultures. J. Muscle Res. Cell Motil. 16, 619–628 (1995).

    Article  CAS  Google Scholar 

  36. Rosenblatt, J., Parry, D. & Partridge, T. Phenotype of adult mouse muscle myoblasts reflects their fibre type of origin. Differentiation 60, 39–45 (1996).

    Article  CAS  Google Scholar 

  37. DiMario, J. X., & Stockdale, F. E. Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev. Biol. 188, 167–180 (1997).

    Article  CAS  Google Scholar 

  38. Finkbeiner, S. & Greenberg, M. E. Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron 16, 233–236 (1996).

    Article  CAS  Google Scholar 

  39. Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995).

    Article  CAS  Google Scholar 

  40. Dolmetsch, R., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  Google Scholar 

  41. Fields, R. D., Eshete, F., Stevens, B. & Itoh, K. Action potential-dependent regulation of gene expression: temporal specificity in Ca2+, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signalling. J. Neurosci. 17, 7252–7266 (1997).

    Article  CAS  Google Scholar 

  42. Ramocki, M. B. et al. Signalling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis. Mol. Cell. Biol. 17, 3547–3555 (1997).

    Article  CAS  Google Scholar 

  43. Hasegawa, K., Lee, S. J., Jobe, S. M., Markham, B. E. & Kitsis, R. N. Cis-acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation 96, 3943–3953 (1997).

    Article  CAS  Google Scholar 

  44. Crespo, P. et al. Signalling through transforming G protein-coupled receptors in NIH 3T3 cells involves c-Raf activation. Evidence for a protein kinase C-independent pathway. J. Biol. Chem. 269, 21103–21109 (1994).

    CAS  PubMed  Google Scholar 

  45. Schiaffino, S. et al. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J. Muscle Res. Cell Motil. 10, 197–205 (1989).

    Article  CAS  Google Scholar 

  46. De Nardi, C. et al. Type 2X myosin heavy chain is coded by a muscle fibre type-specific and developmentally regulated gene. J. Cell Biol. 123, 823–835 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Commission (BIOTECH contract number ERBBIO4CT960216), the Giovanni Armenise–Harvard Foundation for Advanced Scientific Research, Telethon-Italy, the Italian Space Agency (ASI) and the Italian Ministry of University and Scientific and Technological Research (MURST). A.L.S. is a TMR Marie Curie research training grant recipient. We thank A. Hall, E. Taparowski and S. Alemà for Ras mutants; J.S. Gutkind for HA–ERK; R. Kitsis for MyHC-slow promoter-luciferase; R.S. Williams for myoglobin–luciferase; T. Pozzan, P.P. di Fiore and G. Scita for discussions; and A. Picard for help with some experiments.

Correspondence and requests for materials should be addressed to S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Schiaffino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murgia, M., Serrano, A., Calabria, E. et al. Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol 2, 142–147 (2000). https://doi.org/10.1038/35004013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35004013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing