Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The genome sequence of the extreme thermophile Thermus thermophilus


Thermus thermophilus HB27 is an extremely thermophilic, halotolerant bacterium, which was originally isolated from a natural thermal environment in Japan. This organism has considerable biotechnological potential; many thermostable proteins isolated from members of the genus Thermus are indispensable in research and in industrial applications. We present here the complete genome sequence of T. thermophilus HB27, the first for the genus Thermus. The genome consists of a 1,894,877 base pair chromosome and a 232,605 base pair megaplasmid, designated pTT27. The 2,218 identified putative genes were compared to those of the closest relative sequenced so far, the mesophilic bacterium Deinococcus radiodurans. Both organisms share a similar set of proteins, although their genomes lack extensive synteny. Many new genes of potential interest for biotechnological applications were found in T. thermophilus HB27. Candidates include various proteases and key enzymes of other fundamental biological processes such as DNA replication, DNA repair and RNA maturation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Maps of the chromosome and plasmid of T. thermophilus HB27.
Figure 2: Comparison of the chromosome of T. thermophilus HB27 with chromosome I of D. radiodurans R1.
Figure 3: The carotenoid and the cobalamin biosynthesis pathways in T. thermophilus HB27.

Accession codes




  1. 1

    Brock, T.D. & Freeze, H. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol. 98, 289–297 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Oshima, T. & Imahori, K. Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int. J. Syst. Bacteriol. 24, 102–112 (1974).

    CAS  Article  Google Scholar 

  3. 3

    Williams, R.A., Smith, K.E., Welch, S.G., Micallef, J. & Sharp, R.J. DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Int. J. Syst. Bacteriol. 45, 495–499 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Koyama, Y., Hoshino, T., Tomizuka, N. & Furukawa, K. Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J. Bacteriol. 166, 338–340 (1986).

    CAS  Article  Google Scholar 

  5. 5

    Friedrich, A., Prust, C., Hartsch, T., Henne, A. & Averhoff, B. Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl. Environ. Microbiol. 68, 745–755 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Wimberly, B.T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Vieille, C. & Zeikus, G.J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1–43 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Sterner, R. & Liebl, W. Thermophilic adaptation of proteins. Crit. Rev. Biochem. Mol. Biol. 36, 39–106 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Pantazaki, A.A., Pritsa, A.A. & Kyriakidis, D.A. Biotechnologically relevant enzymes from Thermus thermophilus. Appl. Microbiol. Biotechnol. 58, 1–12 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Niehaus, F., Bertoldo, C., Kahler, M. & Antranikian, G. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51, 711–729 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Weisburg, W.G., Giovannoni, S.J. & Woese, C.R. The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst. Appl. Microbiol. 11, 128–134 (1989).

    CAS  Article  Google Scholar 

  12. 12

    Hensel, R., Demharter, W., Kandler, O., Kroppenstedt, R.M. & Stackebrandt, E. Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int. J. Syst. Bacteriol. 36, 444–453 (1986).

    CAS  Article  Google Scholar 

  13. 13

    White, O. et al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1577 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Makarova, K.S. et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65, 44–79 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Fryxell, K.J. & Zuckerkandl, E. Cytosine deamination plays a primary role in the evolution of mammalian isochores. Mol. Biol. Evol. 17, 1371–1383 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Starkuviene, V. & Fritz, H.J. A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus. Nucleic Acids Res. 30, 2097–2102 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Friedrich, A., Rumszauer, J., Henne, A. & Averhoff, B. Pilin-like proteins in the extremely thermophilic bacterium Thermus thermophilus HB27: implication in competence for natural transformation and links to type IV pilus biogenesis. Appl. Environ. Microbiol. 69, 3695–3700 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Slesarev, A.I., et al. The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc. Natl. Acad. Sci. USA 99, 4644–4649 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Mather, M.W., Springer, P., Hensel, S., Buse, G. & Fee, J.A. Cytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence of the fused gene and analysis of the deduced primary structures for subunits I and III of cytochrome caa3. J. Biol. Chem. 268, 5395–5408 (1993).

    CAS  PubMed  Google Scholar 

  20. 20

    Soulimane, T. et al. Structure and mechanism of the aberrant ba(3)-cytochrome c oxidase from Thermus thermophilus. EMBO J. 19, 1766–1776 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Yamaguchi, M., Stout, C.D. & Hatefi, Y. The proton channel of the energy-transducing nicotinamide nucleotide transhydrogenase of Escherichia coli. J. Biol. Chem. 277, 33670–33675 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Yokoyama, K. et al. V-type H+-ATPase/synthase from a thermophilic eubacterium, Thermus thermophilus. Subunit structure and operon. J. Biol. Chem. 275, 13955–13961 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Ramirez-Arcos, S., Fernandez-Herrero, L.A. & Berenguer, J.A. Thermophilic nitrate reductase is responsible for the strain specific anaerobic growth of Thermus thermophilus HB8. Biochim. Biophys. Acta. 1396, 215–227 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Krafft, T., Gross, R. & Kroger, A. The function of Wolinella succinogenes psr genes in electron transport with polysulphide as the terminal electron acceptor. Eur. J. Biochem. 230, 601–606 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Larimer, F.W. et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol. 22, 55–61 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Martens, J.H., Barg, H., Warren, M.J. & Jahn, D. Microbial production of vitamin B12. Appl. Microbiol. Biotechnol. 58, 275–285 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Debussche, L., Thibaut, D., Cameron, B., Crouzet, J. & Blanche, F. Biosynthesis of the corrin macrocycle of coenzyme B12 in Pseudomonas denitrificans. J. Bacteriol. 175, 7430–7440 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Roessner, C.A., Huang, K.X., Warren, M.J., Raux, E. & Scott, A.I. Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). Microbiology 148, 1845–1853 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Sandmann, G. Carotenoid biosynthesis and biotechnological application. Arch. Biochem. Biophys. 385, 4–12 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Nishino, H. et al. Carotenoids in cancer chemoprevention. Cancer Metastasis Rev. 21, 257–264 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Yokoyama, A., Shizuri, Y., Hoshino, T. & Sandmann, G. Thermocryptoxanthins: novel intermediates in the carotenoid biosynthetic pathway of Thermus thermophilus. Arch. Microbiol. 165, 342–345 (1996).

    CAS  Article  Google Scholar 

  32. 32

    Tabata, K., Ishida, S., Nakahara, T. & Hoshino, T. A carotenogenic gene cluster exists on a large plasmid in Thermus thermophilus. FEBS Lett. 341, 251–255 (1994).

    CAS  Article  Google Scholar 

  33. 33

    Hoshino, T., Fujii, R. & Nakahara, T. Molecular cloning and sequence analysis of the crtB gene of Thermus thermophilus HB27, an extreme thermophile producing carotenoid pigments. Appl. Environ. Microbiol. 59, 3150–3153 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Daniel, R.M., Toogood, H.S. & Bergquist, P.L. Thermostable proteases. Biotechnol. Genet. Eng. Rev. 13, 51–100 (1996).

    CAS  Article  Google Scholar 

  35. 35

    Rowsell, S. et al. Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy. Structure 5, 337–347 (1997).

    CAS  Article  Google Scholar 

  36. 36

    Suzuki, Y., Hatagaki, K. & Oda, H. A hyperthermostable pullulanase produced by an extreme thermophile, Bacillus flavocaldarius KP 1228, and evidence for the proline theory of increasing protein thermostability. Appl. Microbiol. Biotechnol. 34, 707–714 (1991).

    CAS  Article  Google Scholar 

  37. 37

    Jaeger, K.E., Dijkstra, B.W. & Reetz, M.T. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315–351 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Ruttimann, C., Cotoras, M., Zaldivar, J. & Vicuna, R. DNA polymerases from the extremely thermophilic bacterium Thermus thermophilus HB-8. Eur. J. Biochem. 149, 41–46 (1985).

    CAS  Article  Google Scholar 

  39. 39

    Bullard, J.M. et al. DNA polymerase III holoenzyme from Thermus thermophilus: identification, expression, purification of components, and use to reconstitute a processive replicase. J. Biol. Chem. 277, 13401–13408 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Pantazaki, A.A., Karagiorgas, A.A., Liakopoulou-Kyriakides, M. & Kyriakidis, D.A. Hyperalkaline and thermostable phosphatase in Thermus thermophilus. Appl. Biochem. Biotechnol. 75, 249–259 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Adachi, O. et al. New developments in oxidative fermentation. Appl. Microbiol. Biotechnol. 60, 643–653 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Quintela, J.C., Pittenauer, E., Allmaier, G., Aran, V. & de Pedro, M.A. Structure of peptidoglycan from Thermus thermophilus HB8. J. Bacteriol. 177, 4947–4962 (1995).

    CAS  Article  Google Scholar 

  43. 43

    Chamberlain, N.R. et al. Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z. Infect. Immun. 59, 4332–4337 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Huber, R. et al. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376, 57–58 (1995).

    CAS  Article  Google Scholar 

  45. 45

    Staden, R., Beal, K.F. & Bonfield, J.K. The Staden package, 1998. Methods Mol. Biol. 132, 115–130 (2000).

    CAS  PubMed  Google Scholar 

  46. 46

    Tabata, K. & Hoshino, T. Mapping of 61 genes on the refined physical map of the chromosome of Thermus thermophilus HB27 and comparison of genome organization with that of T. thermophilus HB8. Microbiology 142, 401–410 (1996).

    CAS  Article  Google Scholar 

  47. 47

    Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607–2618 (2001).

    CAS  Article  Google Scholar 

Download references


We are grateful to Reinhard Sterner and Wolfgang Liebl for advice and discussions that helped to shape this project. We thank Takayuki Hoshino for strain confirmation. This work was supported by a grant of the Niedersächisches Ministerium für Wissenschaft und Kultur to the Göttingen Genomics Laboratory and by funds of the Competence Network Göttingen “Genome Research on Bacteria” financed by the German Federal Ministry of Education and Research (BMBF).

Author information



Corresponding author

Correspondence to Anke Henne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Henne, A., Brüggemann, H., Raasch, C. et al. The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22, 547–553 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing