Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Turnover-based in vitro selection and evolution of biocatalysts from a fully synthetic antibody library

Abstract

This report describes the selection of highly efficient antibody catalysts by combining chemical selection from a synthetic library with directed in vitro protein evolution. Evolution started from a naive antibody library displayed on phage made from fully synthetic, antibody-encoding genes (the Human Combinatorial Antibody Library; HuCAL-scFv). HuCAL-scFv was screened by direct selection for catalytic antibodies exhibiting phosphatase turnover. The substrate used was an aryl phosphate, which is spontaneously transformed into an electrophilic trapping reagent after cleavage. Chemical selection identified an efficient biocatalyst that then served as a template for error-prone PCR (epPCR) to generate randomized repertoires that were subjected to further selection cycles. The resulting superior catalysts displayed cumulative mutations throughout the protein sequence; the ten-fold improvement of their catalytic proficiencies (>1010 M−1) resulted from increased kcat values, thus demonstrating direct selection for turnover. The strategy described here makes the search for new catalysts independent of the immune system and the antibody framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capturing phage for catalyst selection with a mechanism-based reaction scheme.
Figure 2: Catalyst screening for covalent linkage with the turnover-based substrate.
Figure 3: Catalytic properties of scFv TT1 compared to alkaline phosphatase (AP).
Figure 4: Three-dimensional homology model structure of scFv antibody fragment TT1.
Figure 5: Catalytic properties of TT1 mutants.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Schmidt-Dannert, C. Directed evolution of single proteins, metabolic pathways, and viruses. Biochemistry 40, 13125–13136 (2001).

    Article  CAS  Google Scholar 

  2. Farinas, E.T., Bulter, T. & Arnold, F.H. Directed enzyme evolution. Curr. Opin. Biotechnol. 12, 545–551 (2001).

    Article  CAS  Google Scholar 

  3. Griffiths, A.D. & Tawfik, D.S. Man-made enzymes—from design to in vitro compartmentalisation. Curr. Opin. Biotechnol. 11, 338–353 (2000).

    Article  CAS  Google Scholar 

  4. Kazlauskas, R.J. Molecular modeling and biocatalysis: explanations, predictions, limitations, and opportunities. Curr. Opin. Chem. Biol. 4, 81–88 (2000).

    Article  CAS  Google Scholar 

  5. Blackburn, G.M., Datta, A., Denham, H. & Wentworth, P. Jr. Catalytic antibodies. Adv. Phys. Org. Chem. 31, 249–392 (1998).

    CAS  Google Scholar 

  6. Hilvert, D. Critical analysis of antibody catalysis. Annu. Rev. Biochem. 69, 751–793 (2000).

    Article  CAS  Google Scholar 

  7. Wentworth, P. Jr. & Janda, K.D. Catalytic antibodies: structure and function. Cell Biochem. Biophys. 35, 63–87 (2001).

    Article  CAS  Google Scholar 

  8. Wirsching, P., Ashley, J.A., Lo, C.H., Janda, K.D. & Lerner, R.A. Reactive immunization. Science 270, 1775–1782 (1995).

    Article  CAS  Google Scholar 

  9. Barbas, C.F., et al. Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science 278, 2085–2092 (1997).

    Article  CAS  Google Scholar 

  10. Gao, C. et al. Making chemistry selectable by linking it to infectivity. Proc. Natl. Acad. Sci. USA 94, 11777–11782 (1997).

    Article  CAS  Google Scholar 

  11. Amstutz, P. et al. In vitro selection for catalytic activity with ribosome display. J. Am. Chem. Soc. 124, 9396–9403 (2002).

    Article  CAS  Google Scholar 

  12. Janda, K.D. et al. Chemical selection for catalysis in combinatorial antibody libraries. Science 275, 945–948 (1997).

    Article  CAS  Google Scholar 

  13. Soumillion, P. et al. Phage display of enzymes and in vitro selection for catalytic activity. Appl. Biochem. Biotechnol. 47, 175–190 (1994).

    Article  CAS  Google Scholar 

  14. Tanaka, F., Lerner, R.A. & Barbas, C.F. Reconstructing aldolase antibodies to alter their substrate specificity and turnover. J. Am. Chem. Soc. 122, 4835–4836 (2000).

    Article  CAS  Google Scholar 

  15. Danielsen, S. et al. In vitro selection of enzymatically active lipase variants from phage libraries using a mechanism-based inhibitor. Gene 272, 267–274 (2001).

    Article  CAS  Google Scholar 

  16. Knappik, A. et al. Fully synthetic Human Combinatorial Antibody Libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296, 57–86 (2000).

    Article  CAS  Google Scholar 

  17. Krebs, B. et al. High-throughput generation and engineering of recombinant human antibodies. J. Immunol. Methods 254, 67–84 (2001).

    Article  CAS  Google Scholar 

  18. Betley, J.R. et al. Direct screening for phosphatase activity by turnover-based capture of protein catalysts. Angew. Chem., Int. Edn. Engl. 41, 775–777 (2002).

    Article  CAS  Google Scholar 

  19. Myers, J.K., Cohen, J.D. & Widlanski, T.S. Substituent effects on the mechanism-based inactivation of prostatic acid phosphatase. J. Am. Chem. Soc. 117, 11049–11054 (1995).

    Article  CAS  Google Scholar 

  20. Born, T.L., Myers, J.K., Widlanski, T.S. & Rusnak, F. 4-(Fluoromethyl)phenyl phosphate acts as a mechanism-based inhibitor of calcineurin. J. Biol. Chem. 270, 25651–25655 (1995).

    Article  CAS  Google Scholar 

  21. Loubinoux, B., Miazimbakana, J. & Gerardin, P. Reactivity of new precursors of quinone methides. Tetrahedron Lett. 30, 1939–1942 (1989).

    Article  CAS  Google Scholar 

  22. Vayron, P. et al. Toward antibody-catalyzed hydrolysis of organophosphorus poisons. Proc. Natl. Acad. Sci. USA 97, 7058–7063 (2000).

    Article  CAS  Google Scholar 

  23. Scanlan, T.S., Prudent, J.R. & Schultz, P.G. Antibody-catalyzed hydrolysis of phosphate monoesters. J. Am. Chem. Soc. 113, 9397–9398 (1991).

    Article  CAS  Google Scholar 

  24. Wentworth, P. Jr. et al. A bait and switch hapten strategy generates catalytic antibodies for phosphodiester hydrolysis. Proc. Natl. Acad. Sci. USA 95, 5971–5975 (1998).

    Article  CAS  Google Scholar 

  25. Wentworth, P. & Janda, K.D. Catalytic antibodies. Curr. Opin. Chem. Biol. 2, 138–144 (1998).

    Article  CAS  Google Scholar 

  26. Spivak, D.A., Hoffman, T.Z., Moore, A.H., Taylor, M.J. & Janda, K.D. A comparison of flexible and constrained haptens in eliciting antibody catalysts for paraoxon hydrolysis. Bioorg. Med. Chem. 7, 1145–1150 (1999).

    Article  CAS  Google Scholar 

  27. Stec, B., Hehir, M.J., Brennan, C., Nolte, M. & Kantrowitz, E.R. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102. J. Mol. Biol. 277, 647–662 (1998).

    Article  CAS  Google Scholar 

  28. Coleman, J.E. Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21, 441–483 (1992).

    Article  CAS  Google Scholar 

  29. Thatcher, G.R.J. & Kluger, R. Mechanism and catalysis of nucleophilic substitution in phosphate esters. Adv. Phys. Org. Chem. 25, 99–265 (1989).

    CAS  Google Scholar 

  30. Peracchi, A. Enzyme catalysis: removing chemically 'essential' residues by site-directed mutagenesis. Trends Biochem. Sci. 26, 497–503 (2001).

    Article  CAS  Google Scholar 

  31. Davies, D.R., Padlan, E.A. & Sheriff, S. Antibody-antigen complexes. Annu. Rev. Biochem. 59, 439–473 (1990).

    Article  CAS  Google Scholar 

  32. Zaccolo, M., Williams, D.M., Brown, D.M. & Gherardi, E. An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J. Mol. Biol. 255, 589–603 (1996).

    Article  CAS  Google Scholar 

  33. Arnold, F.H. When blind is better: protein design by evolution. Nat. Biotechnol. 16, 617–618 (1998).

    Article  CAS  Google Scholar 

  34. Chen, Y.L., Tang, T.Y. & Cheng, K.J. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can. J. Microbiol. 47, 1088–1094 (2001).

    Article  CAS  Google Scholar 

  35. Christians, F.C. & Loeb, L.A. Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria. Proc. Natl. Acad. Sci. USA 93, 6124–6128 (1995).

    Article  Google Scholar 

  36. Martinez, M.A., Pezo, V., Marliere, P. & Wain-Hobson, S. Exploring the functional robustness of an enzyme by in vitro evolution. EMBO J. 15, 1203–1210 (1995).

    Article  Google Scholar 

  37. Oue, S., Okamoto, A., Yano, T. & Kagamiyama, H. Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues. J. Biol. Chem. 274, 2344–2349 (1999).

    Article  CAS  Google Scholar 

  38. Daugherty, P.S., Chen, G., Iverson, B.L. & Georgiou, G. Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies. Proc. Natl. Acad. Sci. USA 97, 2029–2034 (2000).

    Article  CAS  Google Scholar 

  39. Takahashi, N., Kakinuma, H., Liu, L., Nishi, Y. & Fujii, I. In vitro abzyme evolution to optimize antibody recognition for catalysis. Nat. Biotechnol. 19, 563–567 (2001).

    Article  CAS  Google Scholar 

  40. Ladner, R.C. & Ley, A.C. Novel frameworks as a source of high-affinity ligands. Curr. Opin. Biotechnol. 12, 406–410 (2001).

    Article  CAS  Google Scholar 

  41. Jürgens, C. et al. Directed evolution of a (βα)8-barrel enzyme to catalyze related reactions in two different metabolic pathways. Proc. Natl. Acad. Sci. USA 97, 9925–9930 (2000).

    Article  Google Scholar 

  42. Hanes, J., Schaffitzel, C., Knappik, A. & Plückthun, A. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18, 1287–1292 (2000).

    Article  CAS  Google Scholar 

  43. Wolfenden, R., Ridgway, C. & Young, G. Spontaneous hydrolysis of ionized phosphate monoesters and diesters and the proficiencies of phosphohydrolases as catalysts. J. Am. Chem. Soc. 120, 833–834 (1998).

    Article  CAS  Google Scholar 

  44. O'Brien, P.J. & Herschlag, D. Alkaline phosphatase revisited: hydrolysis of alkyl phosphates. Biochemistry 41, 3207–3225 (2002).

    Article  CAS  Google Scholar 

  45. Honegger, A. & Plückthun, A. Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. J. Mol. Biol. 309, 657–670 (2001).

    Article  CAS  Google Scholar 

  46. Kabat, E.A. & Wu, T.T. Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. J. Immunol. 147, 1709–1719 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.C.-T. and D.L. were supported by Studentships under the European Commission Training and Mobility of Researchers program (grant ERBFMRXCT 980193). J.R. was supported by a Biotechnology and Biological Sciences Research Council Studentship. We are grateful to Aziz Mekhalfia and Jason Betley for assistance with chemical synthesis. We are indebted to Bernhard Schimmele, Lutz Jermutus, Stephen Marino and Patrik Forrer for help, advice and discussion, and to MorphoSys AG for the constructive collaboration on HuCAL-scFv.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Michael Blackburn or Andreas Plückthun.

Ethics declarations

Competing interests

A.P. owns shares of Morphosys AG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesaro-Tadic, S., Lagos, D., Honegger, A. et al. Turnover-based in vitro selection and evolution of biocatalysts from a fully synthetic antibody library. Nat Biotechnol 21, 679–685 (2003). https://doi.org/10.1038/nbt828

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing